STATEMENT OF WARRANTY

Ludlum Measurements, Inc. warrants the products covered in this manual to be free of defects due to workmanship, material, and design for a period of twelve months from the date of delivery. The calibration of a product is warranted to be within its specified accuracy limits at the time of shipment. In the event of instrument failure, notify Ludlum Measurements to determine if repair, recalibration, or replacement is required.

This warranty excludes the replacement of photomultiplier tubes, G-M and proportional tubes, and scintillation crystals which are broken due to excessive physical abuse or used for purposes other than intended.

There are no warranties, express or implied, including without limitation any implied warranty of merchantability or fitness, which extend beyond the description of the face there of. If the product does not perform as warranted herein, purchaser’s sole remedy shall be repair or replacement, at the option of Ludlum Measurements. In no event will Ludlum Measurements be liable for damages, lost revenue, lost wages, or any other incidental or consequential damages, arising from the purchase, use, or inability to use product.

RETURN OF GOODS TO MANUFACTURER

If equipment needs to be returned to Ludlum Measurements, Inc. for repair or calibration, please send to the address below. All shipments should include documentation containing return shipping address, customer name, telephone number, description of service requested, and all other necessary information. Your cooperation will expedite the return of your equipment.

LUDLUM MEASUREMENTS, INC.
ATTN: REPAIR DEPARTMENT
501 OAK STREET
SWEETWATER, TX 79556

800-622-0828 325-235-5494
FAX 325-235-4672
SPECIFICATIONS:

CHAMBER:
INTERNAL DIMENSIONS 20.0(50.8cm) X 20.0(50.8cm) X 20.0(50.8cm)
MAT'L: .031 STAINLESS STEEL (OTHER MAT'L OPTIONAL)

SCINTILLATOR SIZE = 19.0(48.26cm) X 19.0(48.26cm) X 2.0(5.08cm)

WEIGHT:
NO LEAD = APPROXIMATELY 1200 LBS
1" OF LEAD = APPROXIMATELY 2900 LBS
2" OF LEAD = APPROXIMATELY 4600 LBS

DOOR SWING IS REVERSIBLE
NOTE:
LOAD LEAD INTO CABINET BEFORE LOADING LEAD INTO DOORS
NOTE:
LOAD LEAD INTO CABINET BEFORE LOADING LEAD INTO DOORS

STEP 1
REMOVE INNER COVER

STEP 2
REMOVE OUTER COVER

STEP 3
PLACE LEAD INTO SLOTS
SPECIFICATIONS:

CHAMBER:
INTERNAL DIMENSIONS 14.0"(35.6cm) X 14.0"(35.6cm) X 14.0"(35.6cm)
LINER MAT'L: .031 STAINLESS STEEL (OTHER MATERIALS AVAILABLE)

SCINTILLATOR SIZE = 13.0"(33.0cm) X 13.0"(33.0cm) X 2.0"(5.08cm)

WEIGHT:
WITHOUT LEAD = APPROXIMATELY 700 LBS
WITH 1" OF LEAD = APPROXIMATELY 1700 LBS
WITH 2" OF LEAD = APPROXIMATELY 2750 LBS

DOOR SWING IS REVERSIBLE
Table of Contents

Introduction .. 1
Features ... 3
Specifications ... 4
Software License Agreement ... 6
Safety Considerations ... 8
 ENVIRONMENTAL CONDITIONS FOR NORMAL USE .. 8
 REPLACEMENT OF FUSES ... 8
 CLEANING PRECAUTIONS ... 8
 LEAD SHIELDED DOORS ... 8
 ELECTRICAL SAFETY PRECAUTIONS ... 8
Operation ... 10
 CONTROLS AND FUNCTIONS ... 10
 POWER ON SELF TEST (POST) ... 10
 POWERING THE MODEL 54 ON .. 11
 POWERING THE MODEL 54 OFF .. 11
 NORMAL OPERATION .. 11
 STATUS COLORS ... 12
 INSTRUMENT FAILURE .. 12
 SUM CHANNELS ... 13
 SUM ZONE ALARM PRIORITY ... 14
Supervisor .. 15
 TOUCH SCREEN OPERATION .. 15
 OPERATE SCREEN ... 15
 DETECTOR DETAIL SCREEN ... 17
 SHUTDOWN MENU ... 18
 SETUP SCREEN ... 19
Radiological Setup .. 22
 COUNTING MODES .. 23
 Mode 1 – Maximum Sensitivity .. 23
 Mode 2 – Fixed MDA .. 24
 Mode 3 – Minimum Count Time ... 24
 Count Mode Settings ... 25
 FAST CLEAN ... 26
 FAST ALARM ... 27
 UNITS OF MEASURE .. 27
 UPDATING BACKGROUND ... 28
 BACKGROUND ALARMS .. 28
 CALCULATIONS ... 29
Operational Setup ... 31
Recycling 66
Lead Installation 67
Parts List 68
Introduction

The Model 54 Article Monitor is used to detect gamma radiation in or on small articles, tools, and equipment. The interior volume of the chamber is 50.8 x 50.8 x 50.8 cm (20 x 20 x 20 in.). The chamber is shielded with lead, making it fairly massive.

The Model 54A is a smaller version of the Model 54 with internal dimensions of 35.6 x 35.6 x 35.6 cm (14 x 14 x 14 in.). This version provides an option for monitoring smaller articles. Although a smaller size, the Model 54A exhibits the same features and operates in the same way as the Model 54.

The Model 54R, 54R-1, and 54R-11 are retrofit options that allow customers to use an existing article monitor from another manufacturer, but with the Ludlum Model 54 electronics. Existing detectors can also be replaced with Ludlum detectors if needed.

The Model 54R-11, is a specific set of electronics designed to fit an existing Thermo SAM-11 article monitor.

➢ For the remainder of this manual, references to the Model 54 will include the Model 54A and retrofit options unless otherwise noted.

The Model 54 is designed to be user-friendly. Users press only a single COUNT button in normal operation and see status clearly on the 30.7 cm (12.1 in.) color liquid crystal display (LCD). Instrument technicians have password-protected access to advanced automated routines to calibrate or verify operation. The Model 54 Article Monitor can be configured with several different options including:

- 2.5 or 5.1 cm (1 or 2 in.) thick lead shielding
- left or right-door swing
- optional second LCD display

There are three counting modes to maximize throughput, sensitivity, or to fix the count time. Several parameters can be modified to adjust the alarm set point, including the false alarm probability, detection probability, background sigma coefficient, and the composite sigma coefficient. Fast alarm and clean options provide the ability to determine if an article is contaminated or clean before the count cycle has ended.
The model number identifies the configuration of the Article Monitor. The first number is the basic series number. The second number is the number of detectors. The third number indicates the thickness of the lead shielding. The fourth number indicates the number of displays. So a Model 54-6-1-1 has the following configuration:

- 6 detectors
- 2.5 cm (1 in.) lead shielding
- 1 LCD display
Features

- True 4π counting geometry for optimized homogeneous efficiency.
- Fast Alarm/Fast Clean counting technology for shorter counting cycles.
- Large 30.7 cm (12.1 in.) color LCD with touch screen interface.
- Three counting modes to maximize throughput, sensitivity, or fix the count time.
- Automatic background updating.
- Contaminated detector check.
- Individual detector and sum channel alarms.
- Two levels of password security.
- Door locks to control single or dual door operation.
- 5.1 cm (2 in.) thick lead shielding (option for 2.5 cm {1 in.}).
- Rugged, easy-swing hinges.
- Count, Background Update, and Alarm Acknowledge buttons.
- **Model 54:** 50.8 x 50.8 x 50.8 cm (20 x 20 x 20 in.) inside dimensions
 Model 54A: 35.6 x 35.6 x 35.6 cm (14 x 14 x 14 in.) inside dimensions
- Single Board Computer (SBC) running a Windows Operating System
 (Windows 7 at the time of this writing.)
Section 3
Specifications

CHAMBER

Internal Dimensions:
- **Model 54**: 50.8 x 50.8 x 50.8 cm (20 x 20 x 20 in.) (H x W x L)
- **Model 54A**: 35.6 x 35.6 x 35.6 cm (14 x 14 x 14 in.) (H x W x L)

Detection Volume:
- **Model 54**: 130 L (4.6 ft³)
- **Model 54A**: 45 L (1.6 ft³) for the Model 54A

Liner Material: 7.9 mm (0.031 inch) stainless steel

Note: For the Model 54R or 54R-1, this depends on the customer's existing system.

DETECTORS

Four or six detector configurations available

Scintillator: EJ-200 plastic

Size:
- **Model 54**: 48.3 x 48.3 x 5.1 cm (19 x 19 x 2 in.) (H x W x D)
- **Model 54A**: 33.0 x 33.0 x 5.1 cm (13.0 x 13.0 x 2.0 in.) (H x W x D)
- **Model 54R-1**: (4 each): 30.5 x 89 x 5.1 cm (12 x 35 x 2 in) (H x W x D)
- **Model 54R-1**: (2 each): 30.5 x 61 x 5.1 cm (12 x 24 x 2 in) (H x W x D)

DOORS

Reversible door swing

Door hinges are heavy-duty rated, incorporating ball bearings for smooth operation

Door locks to control single (or dual) door operation

MECHANICAL

Dimensions:
- **Model 54**: 139 x 90.9 x 95.3 cm (54.7 x 35.8 x 37.5 in.) (H x W x D)
- **Model 54A**: 94.0 x 68.6 x 80.0 cm (37.0 x 27.0 x 31.5 in.) (H x W x D)

Note: For the Model 54R or 54R-1, this depends on the customer’s existing system.
Weight: 0 cm (0 in.) of lead:
Model 54 is approximately 544 kg (1200 lb)
Model 54A is approximately 318 kg (700 lb)

2.5 cm (1 in.) of lead:
Model 54 is approximately 1315 kg (2900 lb)
Model 54A is approximately 771 kg (1700 lb)

5.1 cm (2 in.) of lead:
Model 54 is approximately 2087 kg (4600 lb)
Model 54A is approximately 1247 kg (2750 lb)

Lead is shipped separately and installed on site.
Model 54R: depends on the customer’s existing system.
Model 54R-I: weight of system without lead is approximately 137 kg (303 lb)

ENVIRONMENTAL
Temperature: 0 to 50 °C (32 to 122 °F)

COUNTING
Three alarm modes to maximize throughput, sensitivity, or fix the count time
Alarms available for sum channels, sum zones, and individual detectors
Automatic background updating
Contaminated detector checking
False alarm control
Logs each use, operational test, and calibration

PERFORMANCE
Detects 2.2 nCi mixed 60Co/137Cs source in under 5 seconds
BY INSTALLING THIS SOFTWARE, YOU ARE CONSENTING TO BE BOUND BY THIS AGREEMENT. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT INSTALL THE PRODUCT.

Single User License Grant: Ludlum Measurements, Inc. ("Ludlum") and its suppliers grant to Customer ("Customer") a nonexclusive and nontransferable license to use the Ludlum software ("Software") in object code form solely on a single central processing unit owned or leased by Customer or otherwise embedded in equipment provided by Ludlum.

Customer may make one (1) archival copy of the Software provided Customer affixes to such copy all copyright, confidentiality, and proprietary notices that appear on the original.

EXCEPT AS EXPRESSLY AUTHORIZED ABOVE, CUSTOMER SHALL NOT: COPY, IN WHOLE OR IN PART, SOFTWARE OR DOCUMENTATION; MODIFY THE SOFTWARE; REVERSE COMPILe OR REVERSE ASSEMBLE ALL OR ANY PORTION OF THE SOFTWARE; OR RENT, LEASE, DISTRIBUTE, SELL, OR CREATE DERIVATIVE WORKS OF THE SOFTWARE.

Customer agrees that aspects of the licensed materials, including the specific design and structure of individual programs, constitute trade secrets and/or copyrighted material of Ludlum. Customer agrees not to disclose, provide, or otherwise make available such trade secrets or copyrighted material in any form to any third party without the prior written consent of Ludlum. Customer agrees to implement reasonable security measures to protect such trade secrets and copyrighted material. Title to Software and documentation shall remain solely with Ludlum.

LIMITED WARRANTY. Ludlum warrants that for a period of ninety (90) days from the date of shipment from Ludlum: (i) the media on which the Software is furnished will be free of defects in materials and workmanship under normal use; and (ii) the Software substantially conforms to its published specifications. Except for the foregoing, the Software is provided AS IS. This limited warranty extends only to Customer as the original licensee. Customer’s exclusive remedy and the entire liability of Ludlum and its suppliers under this limited warranty will be, at Ludlum or its service center’s option, repair, replacement, or refund of the Software if reported (or, upon request, returned) to the party supplying the Software to Customer. In no event does Ludlum warrant that the Software is error free or that Customer will be able to operate the Software without problems or interruptions.

This warranty does not apply if the software (a) has been altered, except by Ludlum, (b) has not been installed, operated, repaired, or maintained in accordance with instructions supplied by Ludlum, (c) has been subjected to abnormal physical or electrical stress, misuse, negligence, or accident, or (d) is used in ultra hazardous activities.

DISCLAIMER. EXCEPT AS SPECIFIED IN THIS WARRANTY, ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE, ARE HEREBY EXCLUDED TO THE EXTENT ALLOWED BY APPLICABLE LAW. IN NO
EVENT WILL LUDLUM OR ITS SUPPLIERS BE LIABLE FOR ANY LOST REVENUE, PROFIT, OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR PUNITIVE DAMAGES HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE EVEN IF LUDLUM OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH.

DAMAGES. In no event shall Ludlum's or its suppliers' liability to Customer, whether in contract, tort (including negligence), or otherwise, exceed the price paid by Customer. The foregoing limitations shall apply even if the above-stated warranty fails of its essential purpose. SOME STATES DO NOT ALLOW LIMITATION OR EXCLUSION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES.

The above warranty DOES NOT apply to any beta software, any software made available for testing or demonstration purposes, any temporary software modules or any software for which Ludlum does not receive a license fee. All such software products are provided AS IS without any warranty whatsoever.

This License is effective until terminated. Customer may terminate this License at any time by destroying all copies of Software including any documentation. This License will terminate immediately without notice from Ludlum if Customer fails to comply with any provision of this License. Upon termination, Customer must destroy all copies of Software.

Software, including technical data, is subject to U.S. export control laws, including the U.S. Export Administration Act and its associated regulations, and may be subject to export or import regulations in other countries. Customer agrees to comply strictly with all such regulations and acknowledges that it has the responsibility to obtain licenses to export, re-export, or import Software.

This License shall be governed by and construed in accordance with the laws of the State of Texas, United States of America, as if performed wholly within the state and without giving effect to the principles of conflict of law. If any portion hereof is found to be void or unenforceable, the remaining provisions of this License shall remain in full force and effect. This License constitutes the entire License between the parties with respect to the use of the Software.

Restricted Rights - Ludlum's software is provided to non-DOD agencies with RESTRICTED RIGHTS and its supporting documentation is provided with LIMITED RIGHTS. Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph "C" of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. In the event the sale is to a DOD agency, the government's rights in software, supporting documentation, and technical data are governed by the restrictions in the Technical Data Commercial Items clause at DFARS 252.227-7015 and DFARS 227.7202. Manufacturer is Ludlum Measurements, Inc. 501 Oak Street Sweetwater, Texas 79556.
Safety Considerations

Environmental Conditions for Normal Use

Indoor use only

No maximum altitude

Temperature range of 0 to 50 °C (32 to 122 °F).

Maximum relative humidity of less than 95% (non-condensing)

Mains supply voltage range 100-240 Vac, 50-60 Hz single phase (less than 1A) to desktop power supply supplies DC voltage to instrument.

Replacement of Fuses

Warning!

For continued protection against risk of fire, replace only with fuses of the specified type and current rating!

Cleaning Precautions

The Model 54 is ruggedly designed and requires very little maintenance. The only routine maintenance item is the periodic cleaning of the LCD touch screen. Cleaning of the LCD touch screen should be done using a soft cloth and water only.

Lead Shielded Doors

The doors are shielded with lead, which makes them very heavy. Use caution when opening and closing the doors.

Electrical Safety Precautions

When installing the unit:

- Do not expose electronics to rain or an environment where they may be splashed by water or other liquids, as doing so may result in fire or electric shock.
• Use the unit only with the voltage specified. Using a voltage higher than
that which is specified may result in fire or electric shock.

• Do not cut, kink, otherwise damage nor modify the power supply cord.
In addition, avoid using the power cord in close proximity to heaters,
and never place heavy objects – including the unit itself – on the power
cord, as doing so may result in fire or electric shock.

• Avoid installing or mounting the unit or its power supply in unstable
locations, such as on a rickety table or a slanted surface. Doing so may
result in the unit falling down and causing personal injury and/or
property damage.
Section 6

Operation

Controls and Functions
The following is a description of the controls and functions on the article monitor.

LCD Touch Screen: 30.7 cm (12.1 in.) color liquid crystal display (LCD) with integrated touch screen. An optional touch screen display may be mounted on the egress side, which mirrors the main display.

Count Buttons: green count buttons mounted on both the ingress and egress sides. Press this button after placing an article in the monitor to start the count.

Update Button(s): blue background update button mounted on the ingress side. An optional update button may also be mounted on the egress side.

Acknowledge Button(s): red alarm acknowledge button mounted on the ingress side. An optional update button may also be mounted on the egress side. Press button once to acknowledge the audio and again to clear the alarm.

Top Panel Doors: locking top-panel doors provide internal access to the power button and main electronics.

Light Stack with Audio: three color (Red, Yellow, and Green) lights indicate the article monitor status.

Front Door: ingress door secured by latch integrated into the door handle and magnetic lock.

Rear Door: egress door secured by latch integrated into the door handle and a magnetic lock.

Power on Self Test (POST)
When the Article Monitor is first powered up, all relays, lights, and audio devices are momentarily activated. This POST is done in order to give the user an opportunity to ensure that all applicable devices are working. The test lasts for about three seconds. Approximately two minutes later the system should be finished booting and the Initializing screen will be displayed.
After POST, the system will establish the level of background radiation. The system then begins updating background radiation levels every second.

Powering the Model 54 On
1. Using the supplied key, unlock and open either top panel.
2. Connect the AC adapter to a 120 volt electrical outlet.
3. Turn the power switch on. The power switch is located on the circuit board mounted on the side. All relays and lights will be activated for approximately three seconds.
4. Close and lock the panel.
5. The Model 54 will take approximately two minutes to boot.

Powering the Model 54 Off
1. Tap the Exit button on the main screen and enter the level 1 or 2 password.
2. Tap the Shutdown Article Monitor button.
3. Wait until the message, “It is now safe to turn off your computer,” is displayed.
4. Using the supplied key, unlock and open either door.
5. Turn the power switch off. The power switch is located on the circuit board mounted on the side.
6. Close and lock the panel.

Note: Do not turn off the Model 54 without first shutting down the computer.

Normal Operation
1. Open door.
2. Place article(s) to be monitored into chamber.
3. Close door.
4. Press count button.
5. After count has expired, remove the article. The door that is not opened automatically locks.
6. If an alarm occurred and contamination checks are enabled, the article monitor will start a count when the door is closed to check if the chamber has been contaminated.
Status Colors
The Article Monitor uses color to identify the status of the instrument at any given time. The status box in the upper left of the main screen and the detector map change colors depending on the various states of the article monitor and detectors. The colors are:

- Green – indicates the Article Monitor is ready to scan articles.
- Yellow – indicates the Article Monitor has a failure.
- Red – indicates the Article Monitor has a radiation alarm.
- White – indicates the Article Monitor is scanning an article.
- Blue – indicates the Article Monitor is initializing or updating background.

The lights and audio on the light stack operate as follows:

- Red – indicates the Article Monitor has a radiation alarm. In addition to the voice audible alert, there will be a fast beeping audible alarm.
- Yellow – indicates the Article Monitor is in a fail condition or is not ready to scan articles. If a fail condition, is present there will be a slow beeping audible alarm. While in any setup screens, when the Article Monitor is forcing a background update or when the Supervisor application is not running, the yellow light will be ON.
- Green – indicates the Article Monitor is ready to scan articles.

Instrument Failure
There are several conditions that cause system failure:

1. LOW BACKGROUND - The instrument continually checks the detectors for abnormally low readings as defined by the low background alarm set points. When this condition is detected, the detector map on the main screen will indicate which detector failed. This condition normally signals a failure of either the detector or its associated preamp electronics.

2. HIGH BACKGROUND - The instrument continually checks the detectors for abnormally high readings as defined by the high background alarm set points. When this condition is detected, the detector map on the main screen will indicate which detector failed. This condition normally signals a failure of either the detector or its associated preamp electronics, but can also warn of some nearby strong source of radiation. At any rate, the possibility of such a nearby strong source of radiation warrants further investigation.
Sum Channels
The Model 54 can be set to the article monitor physical detectors, which are grouped into various sum zones composed of two and three detector combinations. The sum zones are defined as:

- Left + Top
- Top + Right
- Right + Bottom
- Bottom + Left
- Left + Front Door
- Top + Front Door
- Right + Front Door
- Bottom + Front Door
- Left + Rear Door
- Top + Rear Door
- Right + Rear Door
- Bottom + Rear Door
- Left + Top + Front Door
- Top + Right + Front Door
- Right + Bottom + Front Door
- Bottom + Left + Front Door
- Left + Top + Rear Door
- Top + Right + Rear Door
- Right + Bottom + Rear Door
- Bottom + Left + Rear Door
- Sum Channel (All Detectors)
Sum Zone Alarm Priority

Alarm priority is dependent on the number of detectors. A two-detector sum alarm will not be posted if either of its constituent detectors have alarmed. A three-detector sum alarm will not be posted if any of its single detectors or two-detector sum zones have alarmed. The sum channel will only alarm if no other detector or sum zone alarmed.
Supervisor

The Model 54 Article Monitor is controlled by the Supervisor application. The supervisor is started automatically when the article monitor is booted. If the supervisor is not running, it can be started from the Model 54 Article Monitor icon on the desktop. When the supervisor is not running, the yellow light on the light stack will be lit to indicate that the article monitor is not in service.

Touch Screen Operation

For normal operation, the supervisor requires little to no interaction. When interaction is required, the supervisor can be controlled using the LCD touch screen or through an external USB keyboard and mouse. Simply tap on the screen to “click” on buttons. Each screen in the supervisor has a button at the top right, which will open an on-screen keyboard. Numeric fields have up and down arrows, which provide a means to quickly increment or decrement the value. By tapping directly in a numeric field, a numeric keypad is displayed to allow values to be changed easily.

Operate Screen

The Operate screen in normal operation of the article monitor contains the following:

Title Bar – displays the user-definable site, location, customer ID and LMI serial number of the article monitor.

Status Display – displays the current status of the article monitor. The status can be one of the following:

- Ready
- Door Open
- Clean
- Counting
- Alarm
- Failure
- Updating Background
- Initializing

- Contamination Check

- Contaminated

Status Text – displays information about the current status.

Clock/Timer – displays the current time when not counting and a countdown timer when the article monitor is counting or initializing a new background.

Detector Status Display – graphical representation of the detectors with color-coded status display. Tapping on a detector brings up the detector detail screen.

Door Indicators – indicate if a door is open, closed, or locked.

Alarm Activity – current alarm activity shown when only the sum channel option is enabled.

Exit Button – allows the user to exit the Supervisor application, restart the article Monitor, or shut down the article monitor. It is password protected.

Setup Button – allows access to the various setup screens. It is password protected.

Version – The software version and host board firmware version are displayed next to the LMI logo in the bottom left corner of the screen.
Detector Detail Screen

A detail screen for a detector can be displayed by tapping on the detector in the graphical display. The detail screen provides the background count, net count (if a count is in progress), alarm set point, and status. Also displayed are the values for each sum zone that the detector is included in. In Sum Channel Only mode, tapping on any detector will display all individual detectors plus the sum channel. When individual detectors are enabled, tapping on a detector will bring up that detector plus all sum zones that include the detector.
Shutdown Menu

The Shutdown menu provides access to restart or shut down the article monitor or to exit the Supervisor application. It is accessed through the Exit button on the Operate screen. The level 1 or 2 password is required before accessing this screen. Always shut down the article monitor properly through software before powering off; otherwise data corruption may occur.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Background (cpm)</th>
<th>Net Count (cpm)</th>
<th>Net Alarm (cpm)</th>
<th>Net Fast Alarm (cpm)</th>
<th>Net Fast Clean (cpm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>6,000</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No Alarm</td>
</tr>
<tr>
<td>T</td>
<td>6,000</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No Alarm</td>
</tr>
<tr>
<td>R</td>
<td>6,000</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No Alarm</td>
</tr>
<tr>
<td>B</td>
<td>6,000</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No Alarm</td>
</tr>
<tr>
<td>FD</td>
<td>6,000</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No Alarm</td>
</tr>
<tr>
<td>RD</td>
<td>6,000</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No Alarm</td>
</tr>
<tr>
<td>Sum</td>
<td>36,000</td>
<td>0</td>
<td>3,025</td>
<td>21,178</td>
<td>1,497</td>
<td>No Alarm</td>
</tr>
</tbody>
</table>
Exit Supervisor – Closes the Supervisor application and provides access to the operating system environment. This is necessary for performing software updates, configuring Windows settings such as printing or networking, or to provide access to the data files. A confirmation window will be displayed before the Supervisor application is closed.

Restart Article Monitor – This function performs a restart of the article monitor's single board computer. A confirmation window will be displayed before the article monitor is restarted.

Shutdown Article Monitor – This function shuts down the operating system in preparation for powering off the article monitor. This option should always be used before powering off the article monitor to prevent data corruption.

Setup Screen

The Setup button on the Operate screen provides access to the various setup and calibration functions of the article monitor. The level 1 or 2 password is required to access the Setup screen. The level 1 password does not provide full access to all setup functions. Radiological, Operational, FOM, Variance/Mean, and False Alarm screens are not available using the level 1 password.
Radiological – set up the counting mode and its parameters, isotopic mix, and unit of measurements.

Operational – set up passwords, user-definable information, and options that control how the Supervisor application operates and displays information.

Detectors – set up the detector high voltage (HV), lower level discriminator (LLD), and upper level discriminator (ULD). A calibration wizard is available to calibrate the various voltages and calibration constants.

Save Setup Report – save a report, which contains the current hardware and software configuration.

Update – start a new background initialization.

Source Check – perform a source check to verify all detectors are operating correctly.
False Alarm – Perform a false alarm test with a specified number of counting cycles for each detector.

Buttons/Relays – test the input and output including buttons, door locks, lights, and relays.

Variance/Mean – calculate the variance and mean for each detector.

Scaler – perform a scaler count for a user-definable count time.

FOM – find the optimum HV set point for each detector by running a high-voltage plateau and calculating the Figure of Merit.

Efficiencies – calculate the efficiencies for each detector.

Reset Host – reset the internal host board. The host board is responsible for collecting the count data and passing it to the SBC though a USB serial port.

View Log – view the log and report files. System, background, and scan logs are created automatically. Other screens provide the ability to save a report, which can be viewed here.
The Radiological Setup screen provides access to the various parameters and options that control the counting modes, isotopic mix, background alarm set points, and units of measure. The title indicates the current counting mode.

After making a change, press the Apply button to save the changes immediately. Press the OK button to save the changes and exit the Radiological Setup screen.
Press the Close button to exit the screen without saving any changes. To set the changes immediately, press the Apply button.

Counting Modes

There are three counting modes available.

Mode 1 – Maximum Sensitivity

The alarm set point is computed at the minimum allowable value that is determined by the background count rate and acceptable false alarm probability. Note: Alarm set points are computed as background-subtracted (net) count rates.

\[
R_{A(\text{min})} = K_B \sqrt{\frac{R_B}{T} + \frac{R_B}{T_B}}
\]

Where:

- \(R_{A(\text{min})} \) = Alarm set point in cps.
- \(K_B \) = Background sigma coefficient, which determines the false alarm probability.
- \(R_B \) = Average background count rate in cps for the detector.
- \(T \) = Count time in seconds.
- \(T_B \) = Background count time in seconds.

After calculating the alarm set point, a check is made to see if the computed MDA exceeds the maximum MDA. If it does, then a high background alarm is posted.

\[
MDA = R_{A(\text{min})} + K_{S+B} \sqrt{\frac{MDA \times Eff + R_B}{T} + \frac{R_B}{T_B}}
\]

Where:

- \(R_{A(\text{min})} \) = Alarm set point in cps.
- \(K_{S+B} \) = Composite sigma coefficient for controlling the false alarm probability.
- \(MDA \) = Minimum Detectable Activity.
- \(Eff \) = Detector efficiency.
- \(R_B \) = Average background count rate in cps for the detector.
T = Count time in seconds.

TB = Background count time in seconds.

Mode 2 – Fixed MDA

The alarm set point is calculated on the basis of the maximum allowable as determined by the MDA and its associated detection probability.

\[
R_{A_{(max)}} = MDA \times Eff - K_{S+B} \sqrt{\frac{MDA \times Eff + R_B}{T}} + \frac{R_B}{T_B}
\]

Where:

- \(R_{A_{(max)}} \) = Alarm set point in cps.
- \(K_{S+B} \) = Composite sigma coefficient for controlling the false alarm probability.
- \(MDA \) = Minimum Detectable Activity.
- \(Eff \) = Detector efficiency.
- \(R_B \) = Average background count rate in cps for the detector.
- \(T = \) Count time in seconds.
- \(TB = \) Background count time in seconds.

If the value of \(R_{A_{(max)}} \) is less than \(R_{A_{(min)}} \) as is computed using the Mode 1 equation, a high background alarm is posted.

Mode 3 – Minimum Count Time

The minimum count time is calculated based on the user-defined MDA and is rounded up. If the resulting count time is greater than the user-defined maximum count time, then a high background alarm is posted.

\[
T = \left[K_B \sqrt{R_B} + K_{S+B} \sqrt{MDA \times Eff \times R_B} \right]^{1/2} \sqrt{MDA \times Eff}
\]

The minimum count time is calculated as follows:

1. Calculate \(R_{A_{(min)}} \) and MDA using the Mode 1 equations.
2. If the calculated MDA is less than or equal to the user-defined MDA, proceed to the next step, otherwise increment the count time by one second and return to step 1.

3. If the calculated count time is greater that the user-defined maximum count time, a high background alarm is posted.

Count Mode Settings

The Settings tab allows the various parameters that affect the operation of the count modes to be modified. After changing a setting, press the Apply button to save the changes immediately.

NOTE: Only the settings that apply to the current count mode are shown.

Max MDA – sets the Mode 1 maximum MDA value. If the calculated MDA is greater than this value, a high background is posted. This value is set in specified activity units and is automatically converted when changed. The default value is 675 Bq.
MDA – sets the minimum detectable activity used in Mode 2 and 3. This value is set in specified activity units and is automatically converted when changed. The default value is 675 Bq.

Count Time – specifies the count time in seconds for Mode 1 and 2. The count time is adjustable from 6 to 1000 seconds. The default value is 10 seconds.

Max Count Time – specifies the maximum allowed count time in seconds for Mode 3. If the computed count time is greater than this value, a high background is posted. The count time is adjustable from 6 to 1000 seconds. The default value is 60 seconds.

Minimum Count Time – specifies the minimum count time allowed in seconds for Mode 3. The computed count time will not be allowed to be less than this value. The count time is adjustable from 6 to 1000 seconds. The default value is 6 seconds.

Detection Probability % – sets the detection probability percentage for all counting modes. Changing this value updates the K_{S+B} parameter. The detection probability is adjustable from 0 to 100 percent. The default value is 95%.

K_{S+B} – sets the composite sigma coefficient for all counting modes. Changing this value updates the Detection Probability % parameter. The detection probability is adjustable from 0 to 100. The default value is 1.65.

False Alarm Probability % – sets the false alarm probability for all counting modes. Changing this value updates the K_B parameter. The false alarm probability is adjustable from 0 to 100 percent. The default value is 0.10%.

K_B – sets the background sigma coefficient for all counting modes. Changing this value updates the False Alarm Probability % parameter. The detection probability is adjustable from 0 to 100. The default value is 4.00.

Indeterminate Time Extension Factor – sets a multiplier of elapsed time that is used whenever an indeterminate condition is detected. At the end of a count, if the readings are below the alarm set point and above the fast clean set point (even if fast clean is disabled) the count time is extended. The extended count continues until the system alarms, the counts drop below the fast clean set point or the extended count time expires. The indeterminate time extension factor is adjustable from 0 to 1000. The default value is 0.

Fast Clean
The Fast Clean option provides the ability to determine if an article is clean before the count time has completed. If enabled, the accumulated count rate is evaluated at the end of each one-second interval throughout the monitoring cycle. If the count rate is statistically shown to have a very high probability of being free of contamination, an early clean condition will be posted immediately. If Sum Channel Only is enabled, then only the sum channel must pass the test
otherwise all individual detectors plus the sum channel must pass. The following equation is used:

\[
\frac{Accumulated \ Counts}{T_E} < R_B - 3.1 \sqrt{\frac{R_B}{T_E}}
\]

Where:

\(R_c\) = Count rate required to deem the article to be clean and computed as the total counts accumulated divided by the elapsed time.

\(R_B\) = Average background count rate in cps for the detector.

\(T_E\) = Elapsed count time since the start of the monitoring cycle.

If all single-detector channels are found to satisfy this test, then a clean condition is posted immediately.

Fast Alarm

The Fast Alarm option provides the ability to determine if an article is contaminated before the count time has completed. If enabled, the counts required for an alarm condition are calculated at the end of each one-second interval and compared to the accumulated counts. The following equation is used:

\[
N_A = (R_B + R_A) \times T
\]

Where:

\(R_A\) = Alarm set point in cps for the detector.

\(R_B\) = Average background count rate in cps for the detector.

\(T\) = Count time in seconds.

Sum zones alarm conditions are not processed using the fast alarm algorithm. If the Sum Channel Only option is selected, then only the Sum Channel is checked for a fast alarm otherwise all individual channels and the sum channel are tested.

Units of Measure

The activity units of measure are used where a value is displayed as an activity. When changing the activity unit, the activity is automatically converted into the new unit of measure. The following units of measure are supported:

- dpm
- pCi
The count rate units are used where a value is displayed as a count rate. The following units of measure are supported:

- cps
- cpm

Updating Background

A new background is taken after the Supervisor application is started. The background count time is set here and is valid from 1 (default) to 10 minutes. A background update is forced when returning to the Operate screen from the Setup menu or when the Update button is pressed. During this time the Article monitor is considered not ready for use. Once a new background update is complete, the background is updated once every second.

If the new one second count is higher than the sigma limit, a tentative 10 second background count is taken. If the background is within the sigma okay parameter, the background is restored and normal operation resumes otherwise a high background is posted.

Background Alarms

Each detector has a low and high background alarm set point that is used to identify a detector that is failing. If the background drops below the low set point or goes above the high set point, a detector failure will occur. A low or high background alarm normally signals a failure of either the detector or its associated preamp electronics. A high background alarm can also warn of some nearby strong source of radiation.
Calculations

The Calculations tab shows the current alarm set point and other values relating to the counting mode. In the far right column, Mode 1 and 3 show the sensitivity, and Mode 2 shows the false alarm probability. These values are updated once per second and show all detectors, including sum zones and the sum channel.
Radiological Setup - Mode 2

<table>
<thead>
<tr>
<th>Mode</th>
<th>Settings</th>
<th>Background Alarms</th>
<th>Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Background (cpm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Background (7 sec)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Efficiency</td>
<td>Set Point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7 sec)</td>
</tr>
</tbody>
</table>
| | | | False Alarm |%
| L | | 6,000 | 700 |
| | | 14.03 % | N/A |
| | | 13.1860 % | |
| T | | 6,000 | 700 |
| | | 13.64 % | N/A |
| | | 14.8825 % | |
| R | | 6,000 | 700 |
| | | 9.81 % | N/A |
| | | 38.7271 % | |
| B | | 6,000 | 700 |
| | | 15.78 % | N/A |
| | | 7.1713 % | |
| FD | | 6,000 | 700 |
| | | 10.90 % | N/A |
| | | 30.7915 % | |
| RD | | 6,000 | 700 |
| | | 15.97 % | N/A |
| | | 6.6812 % | |
| Sum | | 36,000 | 4,200 |
| | | 80.12 % | 4,553 |
| | | 0.0000 % | |

[Image of the interface]

[Buttons: OK, Cancel, Apply]
Operational Setup

The Operational Setup screen is used to configure the various options that define how the supervisor software operates.

General

Serial Number
Set the serial number of the article monitor. This is displayed on the title bar of the Operate screen. The serial number is also stamped onto a plate mounted on the top inside corner of the article monitor.
Site
User-defined field 20 characters in length. The Site is displayed in the title bar of the Operate screen.

Location
User-defined field 15 characters in length. The Location is displayed in the title bar of the Operate screen.

Customer ID
User-defined field 10 characters in length. The Customer ID is displayed in the title bar of the Operate screen.

Password
Two-level numeric password. A level 1 password does not allow access to the following setup screens: Radiological, Operational, FOM, Variance/Mean, and False Alarm. A password is required to access the setup menu and to exit/reboot/shut down the application.

Alarm Hold
Sets the number of seconds before the alarm will automatically clear. When the alarm hold time is set to 0, pressing the Acknowledge button once within six seconds of the alarm will silence the audio, and pressing it again after six seconds will clear the alarm. When the alarm hold time is greater than 0, pressing once will silence the audio and pressing again will have no effect.
Options

Require Employee ID to Start Count
When enabled, the user must enter an Employee ID before a monitoring cycle can be started. The employee ID is logged in the scan log.

Require Password to Clear Alarms
When enabled, the level 1 or 2 password is required before the alarm can be cleared.

Enable Weight Sensors (CURRENTLY NOT IMPLEMENTED)
When enabled, allows the weight of the article and specific activity to be determined.

Residual Contamination Check
Enable a residual contamination check after an alarm to verify that the chamber is not contaminated.
Latch Failures
When enabled all detector failures must be cleared manually. When disabled, detector failures will automatically recover once the readings fall back into acceptable limits.

Number of Detectors
The Model 54 Article Monitor may be configured with four or six detectors. A four-door configuration only has the left, top, right, and bottom detectors.

Number of Doors
The Model 54 Article Monitor may be configured with either one or two doors.

Ingress Door Swing
The door swing may be configured at the factory for either left or right-hand operation. This option changes the display of the Article Monitor on the Operate screen.

Door Logic
The door locks can be set to either monitor or user controlled. When using monitor control, the doors are locked to provide a single path through the system. Typically the front door is unlocked with the rear door locked. Once counting is complete, the rear door is unlocked and the front door is locked. If the count results in an alarm, the rear door is locked to prevent the material from leaving and must be taken out through the front door. User control, locks the door opposite of the open door so if a user opens the front door, the rear door is locked and vice versa.

Show Alarm Result
If enabled, the alarm will be displayed as a percentage above the alarm set point.

Show Counts as Activity
When enabled, the scan log will show the count data as activity rather than total counts.
Input Weight Manually
When enabled, a window will appear after pressing the count button to allow for a weight to be entered. The Specific Alarm Activity Level on the Radiological Setup screen sets an alarm based on the activity/weight.

![Input Weight Window](image)
Detectors

The Detectors screen is used to view and set the detector’s high voltage, lower level discriminator, and upper level discriminator. The calibration constants can be set through an easy-to-use wizard, which guides the user through the process. The current background readings can also be viewed here.

Background

<table>
<thead>
<tr>
<th>Background</th>
<th>HV</th>
<th>LLD</th>
<th>S/N</th>
<th>100 ms</th>
<th>1 Sec</th>
<th>Average (cpm)</th>
<th>Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>10</td>
<td>100</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>T</td>
<td>10</td>
<td>100</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>R</td>
<td>10</td>
<td>100</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>100</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>FD</td>
<td>10</td>
<td>100</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>RD</td>
<td>10</td>
<td>100</td>
<td></td>
<td>6,000</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

Current Status: Ready

Update

Close
The background screen shows the current background detail for each detector. Status for each detector is displayed using the background color of the detector indicators. Count data is received from the host board every 100 ms. These 100-millisecond counts are accumulated together every one second. The Average count is the current background average. The Sigma is the standard deviation from the old background average and the new one-second count.

These values only update when the background is updating. The detector indicators will change color to indicate the detector’s status with green for OK, yellow for fail, and red for alarm. The current Article Monitor status is displayed at the bottom. Press the Update button to start a new background update cycle.

High Voltage (HV)

The HV screen displays the current high-voltage set point and calibration constants for each detector. High voltage is typically set using the FOM-HV screen. Read-back voltage is the value from the A/D converter. There are two calibration constants associated with the high voltage. The Actual calibration constant is used to calibrate the high-voltage output while the read-back
calibration constant is used to calibrate the read-back value from the A/D converter. The high voltage is adjustable from 0 to 2500 volts, and the calibration constants are adjustable from -9.9 to +9.9. Click the Refresh button to reload the parameters from all detector boards. After changing the high-voltage set point, click the Save button to apply the changes. The calibration constants can only be changed from the Voltage Calibration Wizard. See below for more information on the Voltage Cal button.

Lower Level Discriminator (LLD)

The LLD screen displays the current lower-level set point and calibration constant for each detector. Readback is the value from the A/D converter and should be close to the set point. The Actual calibration constant is used to calibrate the LLD output. The LLD is adjustable from 0 to 3300 mV, and the calibration constant is adjustable from -9.9 to +9.9. Click the Refresh button to reload the parameters from all detector boards. After changing the LLD set point, click the Save button to apply the changes. The calibration constant can
only be changed from the Voltage Calibration Wizard. See below for more information on the Voltage Cal button.

S/N

The S/N screen displays the serial numbers for each detector.

Voltage Calibration

The Voltage Calibration Wizard is accessed through the Voltage Cal button. The wizard guides the user through the process of setting the calibration constants for each detector. The following parameters will be set by the wizard:

- HV Actual Calibration Constant
- HV Read Back Calibration Constant
- LLD Actual Calibration Constant
- ULD Actual Calibration Constant

The wizard automatically calculates the calibration constant based on the measurements entered for each detector. All calibration constants are zeroed out at the beginning for the selected detectors. Calibration requires a Model 500 Pulser with high-voltage readout or a high-impedance voltmeter with at least 1000 a megohm meter input resistance. Click the Next button to begin the calibration.

HV Actual Calibration Constant

Click the Begin button to start the process of calibrating the HV Actual Calibration Constant. The calibration constant is calculated automatically by entering the high voltage measured at the detector connector. The wizard will set the high voltage of all detectors to 0 and then prompt for the cable to be connected to the first detector. The detector order is: Left, Top, Right, Bottom, Front Door, and Rear Door.
Step 1: HV Actual Cal Constant

<table>
<thead>
<tr>
<th>Set Point</th>
<th>Measured</th>
<th>Cal Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0</td>
<td>+0.0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>+0.0</td>
</tr>
<tr>
<td>R</td>
<td>0</td>
<td>+0.0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>+0.0</td>
</tr>
<tr>
<td>FD</td>
<td>0</td>
<td>+0.0</td>
</tr>
<tr>
<td>RD</td>
<td>0</td>
<td>+0.0</td>
</tr>
</tbody>
</table>

This step will calibrate the HV measured from the detector connector. Measure the HV from the detector connector of each channel and enter the values in the fields to the left. The software will calculate the correct calibration constant automatically.

Click Begin to measure the HV at each connector. When finished click Next to continue or Cancel to exit.
After connecting the cable and clicking the Next button, the high voltage will be restored to the set point. Enter the measured high voltage and click Next. Continue repeating this process until all detectors are completed.

HV Read Back Calibration Constant

The calibration of the Read Back value is automatic. The wizard will automatically calculate a new calibration constant each time the Reload button is clicked. If the values returned are consistent, click the Next button.
The LLD actual calibration constant is obtained by measuring the LLD from the test point on each detector and entering the measured reading in the appropriate field. The calibration constant is automatically calculated. Click the Next button when finished.
ULD Actual Calibration Constant

The ULD actual calibration constant is obtained by measuring the ULD from the test point on each channel and entering the measured reading in the appropriate fields. When complete, click the Next button.
Step 4: ULD Actual Cal Constant

<table>
<thead>
<tr>
<th>Set Point</th>
<th>Measured</th>
<th>Cal Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0</td>
<td>+0.0</td>
</tr>
<tr>
<td>T</td>
<td>3300</td>
<td>+0.0</td>
</tr>
<tr>
<td>R</td>
<td>3300</td>
<td>+0.0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>+0.0</td>
</tr>
<tr>
<td>FD</td>
<td>3300</td>
<td>+0.0</td>
</tr>
<tr>
<td>RD</td>
<td>3300</td>
<td>+0.0</td>
</tr>
</tbody>
</table>

This step will calibrate the ULD measured from the ULD Test-point. Measure the ULD from the test-point of each channel and enter the values in the fields to the left. The software will calculate the correct calibration constant automatically.

When finished click Next to continue or Cancel to exit.
Source Check

The Source Check screen can be used to perform a daily test on the detectors to verify they are still functioning correctly.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Count (dpm)</th>
<th>Status</th>
<th>Bkgrnd (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>641,694</td>
<td>PASS</td>
<td>42,780</td>
</tr>
<tr>
<td>T</td>
<td>659,873</td>
<td>PASS</td>
<td>43,992</td>
</tr>
<tr>
<td>R</td>
<td>917,693</td>
<td></td>
<td>61,180</td>
</tr>
<tr>
<td>B</td>
<td>570,403</td>
<td>PASS</td>
<td>38,027</td>
</tr>
<tr>
<td>FD</td>
<td>825,680</td>
<td></td>
<td>55,045</td>
</tr>
<tr>
<td>RD</td>
<td>563,731</td>
<td>PASS</td>
<td>37,582</td>
</tr>
</tbody>
</table>

Enter the source size of the check source and a percentage that the counts must fall within to be considered acceptable. Open the door, position the source, and close the door. Click the Start button to start the test. The system will run continuous counts using the normal monitoring count time until all detectors pass or the test is cancelled.

Instructions:
1. Position source and close door.
2. Click the start button. This will start a continuous count cycle.

Once all detectors have passed the system is operational. If any detector can not pass the test, service is required.
False Alarm

The False Alarm screen is used to run a series of counts to determine the false alarm rate. The number of samples to run, count time, and background count time are user adjustable.

After setting these parameters, click the Start button to begin the false alarm test. The current sample number, count time remaining, end time, and total false alarms are displayed.

Should an alarm be posted, an immediate background update will follow so as to track any potentially changing background average.
During the false alarm test, the current background, raw count, total alarms, alarm set point, and high count are displayed in the grid for each detector. Click the Cancel button to stop the test.

The criterion for an alarm is satisfied when the net (background-subtracted) count rate for any detector exceeds the alarm set point (R_A).

$$R_A = K_B \sqrt{\frac{R_B}{T} + \frac{R_B}{T_B}}$$

Where:

R_A = Alarm set point in cps.

K_B = Background sigma coefficient that determines the false alarm probability.

R_B = Average background count rate in cps for the detector.

T = Count time in seconds.

T_B = Background count time in seconds.

Only one false alarm will be reported regardless of how many detectors alarmed.
The Buttons/Relays screen is used to test the various inputs and outputs on the article monitor.

The outputs include the lights in the stack, relays, and door locks. The inputs include the door sensors and pushbuttons. Click on the buttons to turn on/off the lights/relays or lock/unlock the doors. When a pushbutton is pressed, the indicator should light up to indicate the button was read successfully. The article monitor should be taken out of service if any button, sensor, or light fails to respond correctly.
Variance/Mean

The Variance/Mean screen is used to determine the stability of the background and should be run once the article monitor is setup. The number of samples and count time are user adjustable.

Click the Start button to begin the test. The current sample number, count time remaining, and end time are displayed along with the detector count, mean, and variance. Click the Cancel button to stop the test.

The algorithm for computing the variance and mean at the end of each sampling period follows:
Initialization at beginning of Variance/Mean Test:

mean = 0
sampleCounter = 0
m2 = 0

At end of each count:

sampleCounter = sampleCounter + 1
delta = count – mean
mean = mean + delta
m2 = m2 + delta * (reading / sampleCounter)
variance = m2 / (sampleCounter -1)
Section 15

Scaler

The Scaler screen provides a way to start a count and see the results as gross counts and count rate.

Set the desired count time in seconds and click the Start button. Click the Cancel button to stop a count that is in progress.
The FOM-HV screen is used to calculate a Figure of Merit to find the optimum high-voltage operating point for each detector. A background count and source count are taken at various high-voltage set points and the best high voltage is chosen. The Settings tab allows which detectors are calibrated, along with the count time for background and source counts.

Select Detectors for HV Plateau
Select which detectors will be included in the calibration. The FOM-HV calibration can be run on multiple detectors or just a single detector.
Count Time Settings
The background and source count times can be set individually and are adjustable from 1 to 300 seconds.

Source Size
The source size in DPM is used to calculate the detector efficiency.

HV Settings
The start and end of the high-voltage plateau are defined. The default start high voltage is 700 V and the default end high voltage is 1100 V. The high voltage increment defaults to 25 V and can be adjusted from 1 to 500 V.

Running the FOM-HV
Click the Start button to begin the FOM process. The FOM tab will automatically be selected if necessary. This tab shows a grid that displays the background, source, and net counts as well as the FOM and efficiency at each high-voltage step.
A prompt will be displayed indicating that all sources should be removed from the chamber. After acknowledging this prompt, background counts will be taken at each high-voltage step.

![Starting background count](image)

When all background counts are complete, a prompt will be displayed indicating that the source must be placed in the center of the article monitor chamber. Open the door, place the source inside, and close the door. Click the OK button when done.

![Starting source count](image)

The article monitor will begin taking source counts at each high-voltage step until completed. Once the current detector is complete, the process will begin for any remaining detectors.

When the FOM is complete, the recommended voltage will be displayed. Click the Set HV button to set the detector's high voltage to the recommended set point.

The Figure of Merit is calculated using the following equation:

\[
FOM = \frac{S^2}{(\sqrt{S} + \sqrt{S + B})^2}
\]

Where:

S = Net (background subtracted) source count rate

B = Background count rate

Click the Save button to save an FOM report. Click the Graph button to display a graph of the three curves. The curves are normalized, i.e., each one peaking at
1, since the scales of the curves can vary dramatically from one another. The background curve is displayed as blue, the net source curve is displayed as red, and the FOM curve is displayed as green.
Efficiencies

The Efficiency screen is used to configure the efficiencies for each detector. These efficiencies are used in calculating alarm points and determining the specific activity if the weight option is enabled.

The Configuration tab is where the count times and detectors are selected. In addition to the individual detectors, the Sum channel can also be selected. The count times are adjustable from 1 to 300 seconds.

The Sources tab is used to configure up to five sources that will be used in determining the efficiencies.
Up to five sources can be used in determining the efficiency. For each source the half-life, certification date, and activity can be set. The current activity is automatically determined based on the data entered for the source.

To edit a source, select it from the list. The default names for the sources are Source-1, Source-2, Source-3, Source-4, and Source-5. After selecting a source, its parameters can be changed. After changing the parameters, click the Save button to save the changes.

The current activity is calculated using the following equation:

\[A_F = A_O e^{-KT} \]

Where:

\[A_F = \text{Current activity} \]
\[A_O = \text{Original activity} \]
K = \frac{0.693}{\text{half-life in days}}

T = \text{Elapsed time in days from certification date}

The isotopic mix is used to create a weighted average efficiency during monitoring cycles. Up to five isotopes may be used, which are defined in the Efficiency screen. The percentages must add up to 100 percent. The isotope names default to Source-1, Source-2, Source-3, Source-4, and Source-5, but will be updated to reflect the isotope names defined in the Sources tab on the Efficiency screen.

Click on the Efficiencies tab to view efficiencies for the detectors.
A grid displays the count and efficiency data for all detectors. Each detector and the Sum channel have efficiency data for five isotopes and three configurations for a total of 15 separate efficiencies. The configurations are:

- Free Air
- 50 pounds
- 100 pounds

Only the selected detector(s), isotope, and configuration efficiency is updated. After selecting an isotope and configuration, click the Start button to begin. A background will be taken for all selected detectors. After the background count is complete, place the source in the center of the chamber. The efficiency will be calculated after the source count is taken and is the net count divided by the source size.
After the efficiency is calculated for the configuration, the isotope efficiency is calculated. If the weight option is disabled, then the isotope efficiency is the free air efficiency. When the weight option is enabled, the isotope efficiency is calculated using the following equation:

\[Efficiency = Ae^{-Bx} \]

Where:

\(A \) = Free air coefficient.

\(B \) = Weight coefficient.

\(E \) = base of the natural logarithm.

\(X \) = Weight of the object.

The \(A \) and \(B \) coefficients are calculated using the following:

\[E_{f0} = Efficiency \text{ measured in free air.} \]

\[E_{f1} = Efficiency \text{ measured with 22.7 kg (50 lb) sphere.} \]

\[E_{f2} = Efficiency \text{ measured with 45.4 kg (100 lb) sphere.} \]

Coefficient \(A \) is equal to \(E_{f0} \) because \(e^0 \) is one. Coefficient \(B \) is calculated using the equations for the 22.7 and 45.4 kg (50 and 100 lb) weights:

\[B = -\frac{\ln\left(\frac{E_{f1}}{E_{f0}}\right)}{50} \]

\[B = -\frac{\ln\left(\frac{E_{f2}}{E_{f0}}\right)}{100} \]

Both computations of \(B \) should be almost identical. The larger of the two values is used for \(B \).

If the weight option is disabled, then the composite efficiency is the sum of the isotopic efficiencies multiplied by their isotopic mix percentages. If the weight option is enabled, then the composite efficiency will be calculated when the weight of the object is determined. The efficiency when using the weight of the object is calculated as follows:

Calculate the mean path length using the weight of the object using:

\[X = \sqrt[3]{weight} \]
Calculate the isotope efficiencies using:

\[Efficiency = Ae^{-Bx} \]

Calculate the composite efficiency by summing the isotope efficiencies, which are multiplied by their isotopic mix percentages.
Section 18

View Logs

The View Log screen is used to view various log files and reports. Log files and reports are saved in the Data Directory specified in the Logging tab of the Operational screen. The article monitor creates several log files automatically. These are:

- System Log
- Background Log
- Scan Log

Log files are named with a prefix of the date and time in the format of YYYYMMDD and have a file extension of .log. These files are ASCII text files and are viewable in any program that can read text files. New log files are created for each day.

The system log file records events relating to the status of the article monitor such as:

- Starting and stopping the Supervisor application
- Commands sent to the host board
- Current status
- Door and pushbutton events
- Alarms and failures

The background log file records the current background and detector status at an interval specified in the logging tab of the Operational screen.

The scan log file records information about the results of the monitoring of an article including:

- Date/Time
- Employee ID, if required
• Status and which detector alarmed, if any

• Count time

• Detector readings

Most setup screens have an option to save a report. These reports can be viewed here as well.
Section 19

Changes

Firmware Compatibility
Version 0.9.1 – 54001n01
Version 1.0.6 – 50401n03

Version 1.0.8
Added manual weight entry.

Version 1.0.7
Bug fixes.

Version 1.0.6
Added non-latching failures.
Changed alarm time extension factor to indeterminate time extension factor.
Changed FOM to use net squared over background for calculation.
Bug fixes.

Version 0.9.1
Beta release.
Recycling

Ludlum Measurements, Inc. supports the recycling of the electronics products it produces for the purpose of protecting the environment and to comply with all regional, national, and international agencies that promote economically and environmentally sustainable recycling systems. To this end, Ludlum Measurements, Inc. strives to supply the consumer of its goods with information regarding reuse and recycling of the many different types of materials used in its products. With many different agencies – public and private – involved in this pursuit, it becomes evident that a myriad of methods can be used in the process of recycling. Therefore, Ludlum Measurements, Inc. does not suggest one particular method over another, but simply desires to inform its consumers of the range of recyclable materials present in its products, so that the user will have flexibility in following all local and federal laws.

The following types of recyclable materials are present in Ludlum Measurements, Inc. electronics products, and should be recycled separately. The list is not all-inclusive. Nor does it suggest that all materials are present in each piece of equipment:

- Batteries
- Glass
- Aluminum and Stainless Steel
- Circuit Boards
- Plastics
- Liquid Crystal Display (LCD)

Ludlum Measurements, Inc. products, which have been placed on the market after August 13, 2005, have been labeled with a symbol recognized internationally as the “crossed-out wheelie bin.” This notifies the consumer that the product is not to be mixed with unsorted municipal waste when discarding; each material must be separated. The symbol will be placed near the AC receptacle, except for portable equipment where it will be placed on the battery lid.
Customers have the option to either provide their own lead or have lead installed by a Ludlum technician.

If the customer desires to provide his or her own lead, following is the number of lead bricks required. (See drawings in the back of this manual for sizes.)

Quantity required for the first layer of lead:
7540-395 = 28
7540-396 = 50
7540-397 = 2

Quantity required for the first layer of lead:
7540-395 = 28
7540-396 = 54
7540-397 = 2

NOTE: The Ludlum Model 54R and 54R-1 are retrofits (electronics and detectors) and use the lead size of the existing system.
Model 54 and 54A Article Monitors

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT</td>
<td>Completely Assembled Model 54 Article Monitor</td>
<td>48-3263</td>
</tr>
<tr>
<td>UNIT</td>
<td>Completely Assembled Model 54A Article Monitor</td>
<td>48-3792</td>
</tr>
<tr>
<td>UNIT</td>
<td>Electronics and MHV Cables Only 48-4212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model 54R-1 (Contact Sales to order Model 54R parts)</td>
<td></td>
</tr>
</tbody>
</table>

Host Board

| BOARD | Completely Assembled Circuit Board | 5540-140 |

Capacitors

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>10μF, 10V</td>
<td>04-5757</td>
</tr>
<tr>
<td>C4</td>
<td>0.01μF, 50V</td>
<td>04-5741</td>
</tr>
<tr>
<td>C5-C6</td>
<td>4.7μF, 50V</td>
<td>04-5819</td>
</tr>
<tr>
<td>C7</td>
<td>6.8μF, 50V</td>
<td>04-5756</td>
</tr>
<tr>
<td>C8</td>
<td>4.7μF, 50V</td>
<td>04-5819</td>
</tr>
<tr>
<td>C9</td>
<td>0.1μF, 25V</td>
<td>04-5744</td>
</tr>
<tr>
<td>C10</td>
<td>4.7μF, 50V</td>
<td>04-5819</td>
</tr>
<tr>
<td>C11</td>
<td>100μF, 10V</td>
<td>04-5820</td>
</tr>
<tr>
<td>C12</td>
<td>1μF, 10V</td>
<td>04-5745</td>
</tr>
<tr>
<td>C13</td>
<td>0.1μF, 25V</td>
<td>04-5744</td>
</tr>
<tr>
<td>C14</td>
<td>10μF, 10V</td>
<td>04-5757</td>
</tr>
<tr>
<td>C15</td>
<td>0.1μF, 25V</td>
<td>04-5744</td>
</tr>
<tr>
<td>C16</td>
<td>680pF, 100V</td>
<td>04-5801</td>
</tr>
<tr>
<td>C20</td>
<td>10μF, 10V</td>
<td>04-5757</td>
</tr>
<tr>
<td>C22</td>
<td>1μF, 10V</td>
<td>04-5745</td>
</tr>
<tr>
<td>C23</td>
<td>0.1μF, 25V</td>
<td>04-5744</td>
</tr>
<tr>
<td>C24</td>
<td>1μF, 10V</td>
<td>04-5745</td>
</tr>
<tr>
<td>C28</td>
<td>10μF, 25V</td>
<td>04-5728</td>
</tr>
<tr>
<td>C53-C56</td>
<td>0.1μF, 25V</td>
<td>04-5744</td>
</tr>
<tr>
<td>C58</td>
<td>4.7μF, 50V</td>
<td>04-5819</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C59</td>
<td>1µF, 10V</td>
<td>04-5745</td>
</tr>
<tr>
<td>C60</td>
<td>0.1µF, 25V</td>
<td>04-5744</td>
</tr>
<tr>
<td>C65</td>
<td>10µF, 10V</td>
<td>04-5757</td>
</tr>
<tr>
<td>C74</td>
<td>0.01µF, 50V</td>
<td>04-5741</td>
</tr>
<tr>
<td>C83</td>
<td>0.01µF, 50V</td>
<td>04-5741</td>
</tr>
<tr>
<td>C92</td>
<td>0.01µF, 50V</td>
<td>04-5741</td>
</tr>
</tbody>
</table>

TRANSISTORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>RK7002AT116</td>
<td>05-5931</td>
</tr>
<tr>
<td>Q4-Q7</td>
<td>RK7002AT116</td>
<td>05-5931</td>
</tr>
<tr>
<td>Q8</td>
<td>NDS356PCT</td>
<td>04-55877</td>
</tr>
<tr>
<td>Q9-Q10</td>
<td>RK7002AT116</td>
<td>05-5931</td>
</tr>
<tr>
<td>Q76</td>
<td>RK7002AT116</td>
<td>05-5931</td>
</tr>
<tr>
<td>Q85</td>
<td>RK7002AT116</td>
<td>05-5931</td>
</tr>
<tr>
<td>Q94</td>
<td>RK7002AT116</td>
<td>05-5931</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATOR

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>TPS71533DCKR</td>
<td>05-5936</td>
</tr>
<tr>
<td>VR2</td>
<td>TPS5420D</td>
<td>05-5941</td>
</tr>
<tr>
<td>VR3</td>
<td>TPS61170DRVT</td>
<td>05-5940</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1-U2</td>
<td>SN74AHC138DS</td>
<td>06-6480</td>
</tr>
<tr>
<td>U3</td>
<td>MSP430F2112IRH</td>
<td>06-6767</td>
</tr>
<tr>
<td>U4</td>
<td>SN74HC151D</td>
<td>06-6750</td>
</tr>
<tr>
<td>U5</td>
<td>ADUC843BSZ62-3</td>
<td>06-6703</td>
</tr>
<tr>
<td>U6</td>
<td>TPS3825-33DBVT</td>
<td>06-6558</td>
</tr>
<tr>
<td>U7</td>
<td>SN74AHC1G14DBVR</td>
<td>06-6556</td>
</tr>
<tr>
<td>U8-U9</td>
<td>SN74AHC14DR</td>
<td>06-6474</td>
</tr>
<tr>
<td>U57</td>
<td>TPA2012D2</td>
<td>06-6766</td>
</tr>
<tr>
<td>U64</td>
<td>SN74HC151D</td>
<td>06-6750</td>
</tr>
<tr>
<td>U70</td>
<td>SN74AHC157D</td>
<td>06-6535</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>MBRS130LT3</td>
<td>07-6423</td>
</tr>
<tr>
<td>CR2-CR3</td>
<td>MBR0540LT1</td>
<td>07-6546</td>
</tr>
<tr>
<td>CR4</td>
<td>MBR340T3G</td>
<td>07-6469</td>
</tr>
<tr>
<td>CR5</td>
<td>MBR0540LT1</td>
<td>07-6546</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1M, 100MW</td>
<td>12-7081</td>
</tr>
<tr>
<td>R2</td>
<td>150K</td>
<td>12-7150</td>
</tr>
<tr>
<td>R3</td>
<td>1M, 100MW</td>
<td>12-7081</td>
</tr>
<tr>
<td>R4</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>R5</td>
<td>3.01K</td>
<td>12-7135</td>
</tr>
<tr>
<td>R6</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>R7-R9</td>
<td>3.01K</td>
<td>12-7135</td>
</tr>
<tr>
<td>R18-R19</td>
<td>1K</td>
<td>12-7084</td>
</tr>
<tr>
<td>R23</td>
<td>10K</td>
<td>12-7839</td>
</tr>
<tr>
<td>R24-R25</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>R26</td>
<td>187K</td>
<td>12-8016</td>
</tr>
<tr>
<td>R27</td>
<td>3.16K</td>
<td>12-7903</td>
</tr>
<tr>
<td>R28-R32</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>R34-R41</td>
<td>1K</td>
<td>12-7084</td>
</tr>
<tr>
<td>R50-R52</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>R66-R67</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>R71</td>
<td>499Ohm</td>
<td>12-7907</td>
</tr>
<tr>
<td>R72</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>R75</td>
<td>150K</td>
<td>12-7150</td>
</tr>
<tr>
<td>R78</td>
<td>499Ohm</td>
<td>12-7907</td>
</tr>
<tr>
<td>R79</td>
<td>1K</td>
<td>12-7084</td>
</tr>
<tr>
<td>R80</td>
<td>0Ohm</td>
<td>12-7104</td>
</tr>
<tr>
<td>R81</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>R84</td>
<td>150K</td>
<td>12-7150</td>
</tr>
<tr>
<td>R87</td>
<td>0Ohm</td>
<td>12-7104</td>
</tr>
<tr>
<td>R88</td>
<td>1K</td>
<td>12-7084</td>
</tr>
<tr>
<td>R89</td>
<td>499Ohm</td>
<td>12-7907</td>
</tr>
<tr>
<td>R90</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>R93</td>
<td>150K</td>
<td>12-7150</td>
</tr>
<tr>
<td>R96</td>
<td>499Ohm</td>
<td>12-7907</td>
</tr>
<tr>
<td>R97</td>
<td>1K</td>
<td>12-7084</td>
</tr>
<tr>
<td>R100-R107</td>
<td>1K</td>
<td>12-7084</td>
</tr>
</tbody>
</table>

CONNECTORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1-J8</td>
<td>MOLEX 43860-002 (LP RJ-11 6P)</td>
<td>13-9037</td>
</tr>
<tr>
<td>J9</td>
<td>MTA 100X3 (640456-3 MTA100)</td>
<td>13-8081</td>
</tr>
<tr>
<td>J11</td>
<td>MTA 100X2 (640456-2 MTA100)</td>
<td>13-8073</td>
</tr>
<tr>
<td>J16</td>
<td>MTA 100X6 (640456-6 MTA100)</td>
<td>13-8095</td>
</tr>
<tr>
<td>J17</td>
<td>MTA 100X8 (640456-8 MTA100)</td>
<td>13-8039</td>
</tr>
<tr>
<td>J18</td>
<td>MTA 100X6 (640456-6 MTA100)</td>
<td>13-8095</td>
</tr>
<tr>
<td>J19</td>
<td>MTA 156X3 (640445-3 MTA 156)</td>
<td>13-8125</td>
</tr>
<tr>
<td>J21</td>
<td>MTA 100X3 (640456-3 MTA100)</td>
<td>13-8081</td>
</tr>
<tr>
<td>J61</td>
<td>MTA 100X4 (640456-4 MTA100)</td>
<td>13-8088</td>
</tr>
<tr>
<td>J68-J69</td>
<td>MTA 156X3 (640445-3 MTA 156)</td>
<td>13-8125</td>
</tr>
<tr>
<td>J72</td>
<td>MTA 100X3 (640456-3 MTA100)</td>
<td>13-8081</td>
</tr>
<tr>
<td>J73</td>
<td>MTA 100X4 (640456-4 MTA100)</td>
<td>13-8088</td>
</tr>
<tr>
<td>J77</td>
<td>MTA 100X4 (640456-4 MTA100)</td>
<td>13-8088</td>
</tr>
<tr>
<td>J82</td>
<td>MTA 100X4 (640456-4 MTA100)</td>
<td>13-8088</td>
</tr>
<tr>
<td>J86</td>
<td>MTA 100X4 (640456-4 MTA100)</td>
<td>13-8088</td>
</tr>
<tr>
<td>J91</td>
<td>MTA 100X4 (640456-4 MTA100)</td>
<td>13-8088</td>
</tr>
<tr>
<td>J95</td>
<td>MTA 100X4 (640456-4 MTA100)</td>
<td>13-8088</td>
</tr>
<tr>
<td>P3</td>
<td>MTA 100X2 (640456-2 MTA100)</td>
<td>13-8073</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1-DS4</td>
<td>LED-LN1271RALTR RED</td>
<td>07-6378</td>
</tr>
<tr>
<td>F1-F9</td>
<td>FUSE (MF-MSMF030-2)</td>
<td>21-8924</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>J12</td>
<td>SOCKET (SLM-104-01-S-S)</td>
<td>13-8986</td>
</tr>
<tr>
<td>L1</td>
<td>INDUCTOR (33µF SMT)</td>
<td>21-8926</td>
</tr>
<tr>
<td>L2</td>
<td>INDUCTOR (10µF D53LC SMT)</td>
<td>21-8925</td>
</tr>
<tr>
<td>P14-P15</td>
<td>USB-MINI-B (UX60-MB-5S8)</td>
<td>13-9075</td>
</tr>
<tr>
<td>P20</td>
<td>USB-MINI-B (UX60-MB-5S8)</td>
<td>13-9075</td>
</tr>
<tr>
<td>P22</td>
<td>USB-MINI-B (UX60-MB-5S8)</td>
<td>13-9075</td>
</tr>
<tr>
<td>SW1-SW2</td>
<td>SWITCH (KSC241G)</td>
<td>08-6827</td>
</tr>
<tr>
<td>Y1-Y2</td>
<td>32.768KHZ</td>
<td>01-5740</td>
</tr>
</tbody>
</table>

Power/Relay Board

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>4.7µF, 50V</td>
<td>04-5819</td>
</tr>
<tr>
<td>C2</td>
<td>10µF, 6.3V</td>
<td>04-5746</td>
</tr>
<tr>
<td>C3</td>
<td>0.01µF, 50V</td>
<td>04-5741</td>
</tr>
<tr>
<td>C4-C7</td>
<td>10µF, 6.3V</td>
<td>04-5746</td>
</tr>
<tr>
<td>C8</td>
<td>10µF, 25V</td>
<td>04-5824</td>
</tr>
<tr>
<td>C9</td>
<td>0.01µF, 50V</td>
<td>04-5741</td>
</tr>
<tr>
<td>C10</td>
<td>4.7µF, 50V</td>
<td>04-5819</td>
</tr>
<tr>
<td>C11</td>
<td>330µF, 10V</td>
<td>04-5832</td>
</tr>
<tr>
<td>C12</td>
<td>4.7µF, 50V</td>
<td>04-5819</td>
</tr>
<tr>
<td>C13</td>
<td>0.01µF, 50V</td>
<td>04-5741</td>
</tr>
<tr>
<td>C14-C15</td>
<td>0.1µF, 25V</td>
<td>04-5744</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1-Q5</td>
<td>RK7002AT116</td>
<td>05-5931</td>
</tr>
<tr>
<td>Q6</td>
<td>RK7002</td>
<td>05-5840</td>
</tr>
</tbody>
</table>

TRANSISTORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR2</td>
<td>TPS5450</td>
<td>05-5947</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>U2</td>
<td>TLC372ID</td>
<td>06-6290</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C5</td>
<td>MBR0520LT1</td>
<td>07-6422</td>
</tr>
<tr>
<td>CR6</td>
<td>MBRS540T</td>
<td>07-6230</td>
</tr>
<tr>
<td>CR7</td>
<td>MBR0520LT1</td>
<td>07-6422</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R5</td>
<td>2.21K</td>
<td>12-7139</td>
</tr>
<tr>
<td>R6-R8</td>
<td>1M, 1/10W</td>
<td>12-7081</td>
</tr>
<tr>
<td>R9-R10</td>
<td>1K</td>
<td>12-7084</td>
</tr>
<tr>
<td>R11-R13</td>
<td>1M, 1/10W</td>
<td>12-7081</td>
</tr>
<tr>
<td>R14</td>
<td>2.21K</td>
<td>12-7139</td>
</tr>
<tr>
<td>R15</td>
<td>1K</td>
<td>12-7084</td>
</tr>
<tr>
<td>R16-R17</td>
<td>1M, 1/10W</td>
<td>12-7081</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>R18</td>
<td>10K</td>
<td>12-7083</td>
</tr>
<tr>
<td>R23</td>
<td>10K</td>
<td>12-7839</td>
</tr>
<tr>
<td>R27</td>
<td>3.16K</td>
<td>12-7903</td>
</tr>
<tr>
<td>J1</td>
<td>RAPC712 (+12VDC)</td>
<td>13-8445</td>
</tr>
<tr>
<td>J2</td>
<td>MTA 156X3 (640445-3 MTA156)</td>
<td>13-8125</td>
</tr>
<tr>
<td>J3-J4</td>
<td>MTA 100X2 (640456-2 MTA100)</td>
<td>13-8073</td>
</tr>
<tr>
<td>J5</td>
<td>CON5</td>
<td>13-9071</td>
</tr>
<tr>
<td>J6-J7</td>
<td>RAPC-722</td>
<td>21-9781</td>
</tr>
<tr>
<td>J8</td>
<td>MTA 100X2 (640456-2 MTA100)</td>
<td>13-8073</td>
</tr>
<tr>
<td>J9</td>
<td>MTA 100X5 (640456-5 MTA100)</td>
<td>13-8057</td>
</tr>
<tr>
<td>J10</td>
<td>MTA 156X2 (640445-2 MTA156)</td>
<td>13-8098</td>
</tr>
<tr>
<td>J11-J12</td>
<td>MTA 100X2 (640456-2 MTA100)</td>
<td>13-8073</td>
</tr>
<tr>
<td>J13</td>
<td>MTA 156X6 (640445-6 MTA156)</td>
<td>13-8071</td>
</tr>
<tr>
<td>J14-J15</td>
<td>MTA 156X3 (640445-3 MTA156)</td>
<td>13-8125</td>
</tr>
<tr>
<td>J16</td>
<td>MTA 100X2 (640456-2 MTA100)</td>
<td>13-8073</td>
</tr>
<tr>
<td>J18</td>
<td>MTA 100X6 (640456-6 MTA100)</td>
<td>13-8095</td>
</tr>
<tr>
<td>RY1-RY3</td>
<td>G6B-2114P</td>
<td>22-9254</td>
</tr>
<tr>
<td>RY4-RY5</td>
<td>AZ850-5</td>
<td>21-8905</td>
</tr>
<tr>
<td>RY6</td>
<td>G6B-2214P</td>
<td>21-9255</td>
</tr>
<tr>
<td>DS1-D8</td>
<td>LED-LN1271RALTR RED</td>
<td>07-6378</td>
</tr>
<tr>
<td>F1-F2</td>
<td>FUSE-3A, 60V</td>
<td>21-8890</td>
</tr>
<tr>
<td>L1</td>
<td>INDUCTOR-15µH, 5.65A</td>
<td>21-8889</td>
</tr>
<tr>
<td>SW1</td>
<td>SWITCH-KSLV411</td>
<td>08-6798</td>
</tr>
</tbody>
</table>

Connectors

Relays

Miscellaneous
SPEC: DOOR LEAD
MODEL NO: 04A
PART NO: 7540-395
MAT: LEAD

REV
DESCRIPTION
DATE
BY
1
VALID
5/11/2010
JOW

22.000 +0.000
-0.031
[558.8 +0.0
-0.8 mm]

1,970 +0.020
-0.010
[500.0 -0.5
-0.5 mm]

1,000 +0.000
-0.020
[254.0 +0.0
-0.5 mm]

SCALE: 3/8
FILM ON OTHER SIDE
DO NOT REMOVE PROTECTIVE FILM

φ0.136 THRU
20PLCS

R0.125

φ0.125 THRU
24PLCS

0.625

18.625

2.500

0.625