LUDLUM MODEL 49-12-2
 HAND AND SHOE MONITOR

October 2010
Serial Number 144173 and Succeeding Serial Numbers

LUDLUM MEASUREMENTS, INC.
501 OAK ST., P.O. BOX 810
SWEETWATER, TX 79556
325/235-5494 FAX: 325/235-4672

Model 49-12-2 Pancake Hand and Shoe Monitor

WARRANTY CERTIFICATE

Ludlum Measurements, Inc. warrants the products covered in this instruction manual to be free of defects due to workmanship, materials, and design for a period of twelve months from the date of delivery, with the exception of photomultiplier tubes and Geiger-Mueller (GM) tubes, which are warranted defect-free for 90 days. This warranty is voided in instances of improper installation, abuse, mishandling, misuse, freight damage, or repair by unqualified persons.

In the event of instrument failure, notify Ludlum Measurements, Inc. for repair or replacement. Liability of this warranty is limited to the purchase price of the instrument.

RECEIVING CONDITION EXAMINATION

Be sure to verify that the shipping carton is received in good condition with no visible damage. Should the instrument be received in a damaged condition, save the shipping container and the packing material and request an immediate inspection by the carrier.

RETURN OF GOODS TO MANUFACTURER

If equipment needs to be returned to Ludlum Measurements, Inc. for repair or calibration, please send to the address below. All shipments should include documentation containing return shipping address, customer name, telephone number, description of service requested, and all other necessary information. Your cooperation will expedite the return of your equipment.

LUDLUM MEASUREMENTS, INC.
ATTN: REPAIR DEPAR0TMENT
501 OAK STREET
SWEETWATER, TX 79556
325-235-5494
FAX 325-235-4672

1. GENERAL DESCRIPTION 3
2. SPECIFICATIONS 3
2.1 Readout / Data Output 3
2.2 Background Update 3
2.3 Count Time 4
2.4 Alarm Output 4
2.5 Alarm Setpoints 4
2.6 Ease of Decontamination 4
2.7 Minimum Detector Efficiency 4
2.8 Design Threshold Sensitivities 4
2.9 Calibration 4
2.10 Power 4
2.11 Size and Weight 4
3. THEORY OF OPERATION 5
3.1 Manual Set Mode 5
3.2 Maximum Sensitivity Mode 5
3.3 Minimum Count Time Mode 7
4. INITIALIZATION 8
5. KEYPAD FUNCTIONS 8
5.1 Main Menu Key 8
5.2 Read Menu Key 8
5.3 Operating Conditions Key 8
5.4 Alarm Setpoints Key 8
5.5 Hold Key 8
5.6 Backspace Key 8
5.7 Enter Key 9
5.8 The CNT Key 9
5.9 UPDT Key 9
5.10 INVT SCRN Key 9
6. DESCRIPTION OF OPERATOR CONTROLS 9
6.1 Single Hand Request 9
6.2 Audio Acknowledge 9
7. DESCRIPTION OF STATUS LIGHTS 9
7.1 Ready 9
7.2 Counting 9
7.3 Check OK 9
7.4 Procedural Error 10
7.5 Updating Background 10
7.6 Low Count 10
7.7 High Bkgnd 10
7.8 HV Fail 10
8. OPERATING PROCEDURES 10
8.1 Parameter Setup Prior to Operation 10
8.2 Optional Parameter Descriptions 11
9. CALIBRATION 12
9.1 High Voltage Power Supply (HVPS) Board Calibration 12
9.2 Quad Amplifier Board Calibration 12
9.3 Detector Efficiency 13
10. MAINTENANCE AND DIAGNOSTIC TROUBLESHOOTING 13
10.1 Setting the Contrast On the Displays 13
10.2 Initialization Failure 13
10.3 Troubleshooting the HVPS Board. 13
10.4 Troubleshooting the Counter Boards 14
10.5 Troubleshooting the Central Processor Board 14
10.6 List of Firmware 15
10.7 List of Boards 15
10.8 Spare Parts Recommendation for Monitor LMI p/n 48-2513. 15
11 PARTS LIST 16
11.1 LED Display Board, Drawing 295×364 16
11.2 Detector Cable Driver Board, Drawing 295×275 17
11.3 LCD Driver Board, Drawing 295 x 292 19
11.4 LED/Switch Board, Drawing 295×484 21
11.5 LVPS-100 VAC Input Board, Drawing 295 x 290 23
11.6 Central Processor Board, Drawing 295×302 25
11.7 Backplane Board, Drawing 295 x 384 27
11.8 Backlight Power Supply Board, Drawing 295 x 309 28
11.9 Quad Counter Board, Drawing 323×261 29
11.10 Quad Preamp Board, Drawing 323×263 30
11.11 Dual HVPS Board, Drawing 323×447 34
APPENDIX A 39
HVPS BOARD CALIBRATION 39
QUAD AMPLIFIER BOARD CALIBRATION 41
SETUP EXAMPLES 42

1. GENERAL DESCRIPTION

The Ludlum M49-12-2 Pancake Hand and Shoe Monitor is designed to check personnel for beta-gamma radiation contamination. The M49-12-2 monitor uses forty pancake G.M. type detectors. The monitor also includes an LMI model 44-9 Pancake Frisker.

A user LED status display quickly shows whether contamination exists, and if so, the location of contamination. This display indicates procedural errors, background errors, or possible hardware problems. User instructions are simple, and are placarded to the front of the instrument. The user has access to only two buttons: the SINGLE HAND request, and the AUDIO ACKNOWLEDGE button.

The cabinet contains a 20-key keypad and LCD diagnostic display for setup of alarm and failure setpoints, diagnostic routines, and
readout of the current count or background count. In addition to manual alarm setpoints the monitor has two automatic alarm calculation modes. The maximum sensitivity mode continuously sets the alarmpoints to a specified number of sigma factors above background. The minimum count time mode continuously changes the count time to the shortest time required to detect a specified radiation level.

The electronics is microprocessor-based, and housed in a chassis mounted on the swing-down cabinet door. Failure detection features include high voltage, low count, and high background. Background accumulation takes place automatically when the unit is inactive.

2. SPECIFICATIONS

2.1 Readout / Data Output

The user display consists of LED indicators and a piezo audio speaker. Two switches available to the user allow single hand operation and audio silencing after the first four seconds.
The monitor has an LCD readout that displays the counts, background counts, and alarm points. Each channel reads out on the LCD in counts per minute from 0000-9999. Additional information is accessed through a menu structure.

2.2 Background Update

The monitor continuously updates background, going into the "counting" mode only when hands are sensed. Switches in each hand compartment are used to indicate proper placement for interrogation. The keypad allows the user to set a time limit to ensure that a background is taken during the specified time. If a background update has not occurred within the time limit, a forced UPDATE will be required. The UPDATING BACKGROUND light will come on, and a background update will be taken before operation can resume. If the user remains on the switches after an update is required the PROCEDURAL ERROR light will come on and an audio tone emitted until the user is clear.

Model 49-12-2 Pancake Hand and Shoe Monitor

October 2010

2.3 Count Time

The count time and frisk time are keypadadjustable from 1 to 255 seconds. Once frisk time is up the monitor emits a beep and continues the frisk count until the frisker is placed back on the hook.

2.4 Alarm Output

The monitor has visual and audible alarm indicators. The red alarm lamp lights for any contamination alarm, and red LEDs show the location of contamination. Audio and visual output is held for a keypad-adjustable time, but the audio can be silenced by the AUDIO ACKNOWLEDGE button after the first four seconds.

2.5 Alarm Setpoints

The counting alarm setpoints are all based on counts per minute from 0000 to 9999 including: count alarm, high background, and low count. The high voltage fail alarm will activate whenever the high voltage strays 10% from the high voltage setpoint.

2.6 Ease of Decontamination

The monitor is constructed of anodized and painted aluminum and stainless steel. PVC film covers the user display and wipes clean with a moist cloth.

2.7 Minimum Detector Efficiency

HANDS: $5 \%-14 \mathrm{C} ; 22 \%-{ }^{90} \mathrm{Sr} /{ }^{90} \mathrm{Y}$; $19 \%-$ ${ }^{99} \mathrm{Tc}$; ${ }^{137} \mathrm{Cs}-17 \%$

SHOES: $32 \%-{ }^{32} \mathrm{P} ; 15 \%-{ }^{238} \mathrm{Pu} ;{ }^{137} \mathrm{Cs}-9 \%$
Efficiencies are stated for a 4π geometry. The hand beta-gamma efficiency is 17% and the foot is 9% with ${ }^{137} \mathrm{Cs}$. This efficiency was achieved using 47 mm diameter source placed over each tube.

2.8 Design Threshold Sensitivities

The threshold sensitivity for all channels is 100 mV .

2.9 Calibration

Yearly calibration/verification can be achieved in approximately two hours. Calibration includes: setting the thresholds, calibrating high voltage, and verification of each channel.

2.10 Power

115 VAC, $50 / 60 \mathrm{~Hz}$ at 0.5 amps maximum. 240 VAC optional.

2.11 Size and Weight

$30 \times 28 \times 58$ inch $(76 \times 71.12 \times 147.32 \mathrm{~cm})$
(D x W x H)
The weight of the M49-12-2 is 190 pounds. Each pancake, except the frisker, is surrounded with approximately $1 / 4$ inch lead, excluding the frisker.

3. THEORY OF OPERATION

The following paragraphs will discuss the different alarm calculation modes. Note that the low count alarm points must be entered manually, regardless of the calculation mode. Examples of using the automatic calculation modes are in the appendix.

3.1 Manual Set Mode

In this mode, all required alarm points are entered via keypad. The setpoints range from 0 to 9999 counts per minute. All alarms, high background alarms and low count alarms are calculated and entered manually.

3.2 Maximum Sensitivity Mode

This automatic mode uses the known background to calculate alarm levels a specified amount above background. Thus, the alarm points change as the background changes. This mode is used when maximum sensitivity is desired, and when the changing background prevents MANUAL SET mode. The MAXIMUM SENSITIVITY parameters are:
alarm point were chosen to be the average background, then an alarm would occur 50% of the time. On the other hand, the alarm point could be chosen to be many times larger than the background average, eliminating the false alarm rate but also the sensitivity.

The standard deviation is described as the measure of the amount of fluctuation for a given distribution. A small deviation indicates that most counts are near the average; a large deviation indicates that counts are more scattered. The standard deviation is usually defined as the square root of the average and is symbolized with the lower case Greek letter sigma (Φ). The problem is to know the sigma factor that yields an alarm point with a given false alarm rate. Since background usually follows the normal distribution, statistics can provide tables of sigma factors for different false alarm rates. The table below shows some sigma factors and the related false alarm rate.
Φ factor False Alarm Rate

1

4

5
0.13% or 1.3 in 1,000
0.003% or 3 in 100,000
15.87% or 15.87 in 100
2.28% or 2.28 in 100
0.00003% or 3 in 10,000,000 shaped curve with most of the background counts close to the average background. 50% of the background counts are above the average and 50% are below the average. If the

$$
\beta-\gamma \text { alarmpt }=\sigma \text { factorx } \sqrt{\text { bkgnd av. }}
$$

- - alarmpt = beta-gamma alarmpoint
Φ factor = sigma factor
bkgnd av. = background average
When the background count becomes large in MAXIMUM SENSITIVITY mode, the ability of the instrument to detect low levels of contamination becomes more difficult. Therefore, the technician can input a maximum allowable source size in dpm. If the background rises to a point where the M49-12-2 can no longer detect this amount of radiation within the desired confidence level, then the HIGH BACKGROUND alarm will activate. The confidence level is described as the probability of alarming on a specified source size. The table below shows confidence levels and the associated factors.

Confidence level	factor
5%	1.645
10%	1.280
15%	1.035
20%	0.840
25%	0.675
30%	0.525
35%	0.385
40%	0.252
45%	0.125
50%	0
55%	-0.125
60%	-0.252
65%	-0.385
70%	-0.525
75%	-0.675
80%	-0.840
85%	-1.035
90%	-1.280
95%	-1.645
99%	-2.325

The condition for the HIGH BACKGROUND lamp to activate in MAXIMUM SENSITIVITY mode follows. Note that the maximum source size is multiplied by detector efficiency so that the resulting number is the count that the detector receives from the source.

Model 49-12-2 Pancake Hand and Shoe Monitor

October 2010

$$
\text { if alarmpt } \geq \text { max. }+ \text { (cfactorx } \sqrt{\max .})
$$

alarmpt = calculated alarmpoint
max. = maximum allowable source size multiplied by efficiency
cfactor $=$ confidence level factor

3.3 Minimum Count Time Mode

The MINIMUM COUNT TIME mode allows the user to input a desired level of contamination to be seen, and the monitor will automatically calculate the count time needed to be able to detect this level of contamination. This mode offers the assurance that a certain level of contamination is reliably detected. The MINIMUM COUNT TIME parameters are:

O Sigma factors
O Confidence level
O Efficiencies
O Desired source sizes
O Maximum count time

$$
t=\left(\frac{\sigma F x \sqrt{\text { bkgnd }}-C L x \sqrt{\text { desired }+b k g n d}}{\text { desired }}\right)^{2}
$$

The MINIMUM COUNT TIME mode is complicated by the fact that count time is dependent upon the background and the desired source size. The formula uses normalized values (all counts in counts per second):
$t=$ time in seconds
$\Phi F=$ sigma factor
bkgnd = background in cps
$C L=$ confidence level factor
desired $=$ desired source size multiplied by efficiency
The count time is chosen from the longest count time calculated from each detector. If the background becomes large, then the count time becomes unacceptably long. Therefore, a maximum count time limit can be entered. If the calculated count time becomes larger than the maximum count time limit, the HIGH BACKGROUND LED will activate.

4. INITIALIZATION

When the Model 49-12-2 powers up, an initializing routine is entered. All lights on the status display will turn on, the audio will sound, and the LCD will show the LMI logo. The message "BOARDS INITIALIZING... PLEASE WAIT" should appear on the LCD. During power-down the central processor, with its battery backed up memory, stores all system parameters. During initialization all parameters are downloaded from the central
processor. If any boards are missing or not working, then the message " \qquad BOARD IS MISSING" will be displayed, and operation will stop. When initialization is completed, the status panel lights will clear and the LCD will show the current counts and operating conditions. Under normal conditions, the monitor must take a background before the READY light indicates that the monitor is ready for normal operation.

5. KEYPAD FUNCTIONS

The keypad is used to view or change the alarm points or system parameters. The 20key keypad has the numerals $0-9$, a backspace key, an enter key, and several special function keys. The functions of the special keys are listed in the following sections.
The LCD backlight is turned off during normal operation. Pressing any key on the keypad will activate the backlight for approximately 30 minutes.

5.1 Main Menu Key

The MAIN MENU key displays the main menu in the lower LCD. This menu is the beginning menu from which all other menus can be reached.

5.2 Read Menu Key

The READ MENU key shows the read menu, bypassing the need to go through the main menu. All alarm setpoints and all other parameters may be read. In addition, all current operating conditions may also be viewed.

5.3 Operating Conditions Key

The OPER COND key displays the current operating conditions, such as high voltage, current sensitivity, current alarm calculation mode, and count time remaining.

5.4 Alarm Setpoints Key

The ALRM PTS key displays all the current alarm points or parameters. This key is useful for showing all the present count type alarm setpoints or parameters. The information displayed depends upon which alarm calculation mode (MANUAL SET, MAXIMUM SENSITIVITY, or MINIMUM COUNT TIME) is currently in use.

5.5 Hold Key

The HOLD key "freezes" the counts shown. The HOLD key will also cancel (halt) the parameter setup process.

5.6 Backspace Key

The BKSP key allows changes to be made to a parameter being entered. The backspace key also returns from one menu to the previous menu, if available.

5.7 Enter Key

The ENT key enters in a parameter in the setup mode. The enter key also progresses from one menu to the next, if available.

5.8 The CNT Key

The CNT key forces an interrogation without having to depress the hand switches.

5.9 UPDT Key

The UPDT key forces a full 40-second background count and refreshes all background data.

5.10 INVT SCRN Key

The INVT SCRN key changes the LCD display between black characters on white and white characters on a black background.

6. DESCRIPTION OF OPERATOR CONTROLS

6.1 Single Hand Request

The SINGLE HAND button is used to request single-hand count operation. After pressing the SINGLE HAND button, counting will begin when either of the hand switches are pressed. This request is valid for approximately ten seconds.

6.2 Audio Acknowledge

If an alarm or procedural error occurs, the AUDIO ACKNOWLEDGE button can be used to silence the audio after four seconds of audio output.

7. DESCRIPTION OF STATUS LIGHTS

7.1 Ready

This green LED indicates that the M49-12-2 is ready to monitor personnel. This light is not lit during a count, when the UPDATING BACKGROUND light is lit, or when the TROUBLE light is lit.

7.2 Counting

This green LED indicates that the M49-12-2 is currently monitoring personnel. It is also lit during frisking. Users must keep hands pressed down until this light turns off and either the ALARM light or CHECK OK light turns on.

Model 49-12-2 Pancake Hand and Shoe Monitor
 October 2010

7.3 Check OK

This green LED indicates that the user is under the radiation contamination limits and is cleared to leave.

7.4 Procedural Error

This orange LED indicates that the user is not properly following procedure. This light will turn on if the user withdraws his hands before the count is finished. Also, insertion of hands while the UPDATING BACKGROUND light is lit will cause the PROCEDURAL ERROR light to light until the hands are removed. If during frisking, the frisker is hung up prior to the end of frisk time this LED and audio will activate. At initial startup the monitor will require the frisker to be hung up in order to obtain a full background update. The procedure LED will light if the frisker is not on the hook during this time.

7.5 Updating Background

This orange LED indicates that the system is updating background. A complete background update replaces the background averaging stack, and takes forty seconds to complete. A contamination check cannot take place when this LED is lit. Standby updates will be taken during inactive periods and will
partially replace background stack data as time allows.

7.6 Low Count

This yellow LED indicates that a count has been read in from a beta-gamma channel that is less than the low count parameter for that channel. The audio will be continuous to indicate that a failure condition exists. A red LED will be activated to show the location of the offending channel.

7.7 High Background

This yellow LED indicates that a background has been read in from a channel that is greater than the beta-gamma background parameter for that channel. The audio will be continuous to indicate that a failure condition exists. A red LED locator will also show the offending channel. This indication will continue until the condition clears.

7.8 HV Fail

This yellow LED indicates that the measured high voltage on any of the detectors is not within 10% of the high voltage parameter. The audio will be continuous to indicate that a failure condition exists.

8. OPERATING PROCEDURES

The following section describes how to install and operate the monitor.

8.1 Parameter Setup Prior to Operation

All of the parameters of interest may be viewed from the read menus. The following parameters must be set or checked prior to monitor operation:

O Alarm setpoints
O Hands and Foot/Frisker high voltages
O Count time
O Background update interval
O Background subtract on/off

- Low Count Alarm Setup

O Low count setpoints
O High background setpoints

The low count alarms monitor the count from the detectors. The low count alarm exists to ensure that the probes are connected and getting some minimum of counts. The low count alarm may be set from 0 to 9998 counts per minute, and defeated by entering 9999. An alarm will occur if the last count is less than or equal to the low count alarm.

- High Background Alarms Setup

The high background alarms may be set from 0 to 9998 counts per minute, and defeated by entering 9999. An alarm will occur if the background is greater than or equal to the high background alarm. This alarm should not be disabled except during setup or calibration.

- Alarm Setpoints or Parameters

The alarm setpoints may be manually set from 0 to 9999 counts per minute. If the alarm calculation mode is MAXIMUM SENSITIVITY or MINIMUM COUNT TIME, certain parameters need to be set. These parameters include detector efficiency, sigma factor, and the confidence level. In MAXIMUM SENSITIVITY mode, the maximum sensitivity limit (in dpm) is needed. In MINIMUM COUNT TIME mode, the desired sensitivity (in dpm) and the maximum count time are needed. Examples of using the alarm calculation mode are in the appendix.

- Detector High Voltage Setup

Typical operating voltage for the pancake G.M. tubes is 900 V .

- Count Time

The Count and Frisk Times are adjustable from 1 to 255 seconds. When in MINIMUM COUNT TIME calculation mode, the count time is adjusted automatically to the minimum required to detect a specified contamination level.

- Background Update Interval Setup

The maximum time between background update intervals should be set to force the monitor to update background.

- Background Subtract Status Setup

Background subtract may be turned on or off. The value used to subtract from the current counts being received is an average of the last four background readings. Under normal operation, the background subtract should be on.

8.2 Optional Parameter Descriptions

- Setting the Real Time Clock

The real time clock is defined in standard military format. The time and the date may be set via SETUP MENU III.

- Setting the Security Code

A four key security code must be assigned that allows access to the setup menus. The security code consists of any four of the twenty keys on the 20-key keypad. The security code may be reset (but code is not stored when power is turned off) to "0000" by going to READ MENU II and pushing the numeral 9 key.

9. CALIBRATION

Yearly calibration should be performed to guarantee accurate operation. Calibration will include the following (in order of procedure): setting the high voltage using a calibrated high voltage voltmeter, checking threshold levels on the quad amplifier boards, finding the detector efficiencies. An operational check should follow calibration of the monitor. A check source should be selected and either an alarm point established or alarm parameters defined. Finally, the check source should be placed over every detector to verify the calibration and alarm setpoints.

9.1 High Voltage Power Supply (HVPS) Board Calibration

Use the Ludlum Model 500 Pulser or equivalent for the procedure. A voltmeter with an input impedance of 1000 megohms or greater may be used. The high voltage should be set via the keypad so that each high voltage is set to 900 VDC or you may short the test pins on the HVPS board itself. The readout does not need to read 900 VDC at this time. Note:All underlined words below are the exact letters found on the circuit board.

The HVPS board \#5323-746 is located in the left most position of the electronics chassis in the slot labelled HVPS1. The potentiometers labeled UH (R183) and LH (R81) set the FEET/FRISKER and HANDS high voltages respectively. Each adjustment should be made to within ± 3 VDC using a high impedance voltmeter. Measure the FEET/FRISKER voltage at the Frisker connector located on the side of the monitor and the HANDS high voltage inside the upper cabinet. The voltage on pins $1 \& 2$ of the TLC27M7 amplifier (U155 FEET, U77 HANDS) should be measured while adjusting the potentiometer labeled UR (R178, upper) and LR (R82, lower) to $0.900 \mathrm{VDC} \pm 0.003 \mathrm{VDC}$.

The OPER COND key can be used to read the current high voltages. The potentiometer labeled HV CAL (R78) is adjusted until the FEET high voltage reads out on the LCD display as 900 VDC $\pm 3 \mathrm{~V}$. The HANDS high voltage should be verified to read $900 \mathrm{VDC} \pm$ 3V.

A 4-pin connector P8 is used to configure the beta-gamma threshold (BT), beta-gamma window (BW), and the alpha threshold (AT). Pin 1 labeled GND of connector P8 should be used as a reference for the following measurements. The potentiometer labeled BT (R85) should not be adjusted, it is not used in this unit. The potentiometer labeled BW (R84) should not be adjusted, it is not used in this unit. The potentiometer labeled AT (R83) should be adjusted so that the voltage from AT-GND (pins 2 to 1) on connector P8 is 2.000 VDC ± 0.02 VDC.

- Sample HVPS Calibration Worksheet

A sample HVPS Calibration Worksheet is located in the appendix and may be reproduced as necessary.

9.2 Quad Amplifier Board Calibration

The detector amplifiers in the main electronics chassis should now be balanced. Note: The reference voltage for AT on the HVPS board must be set as described in Section 9.1 above, prior to performing the following adjustments.

The amplifiers are balanced by applying a "pulser" input to the respective detector connector in the hand cabinet or the floor pan or frisker panel and adjusting the gain control located on the edge of the Amplifier boards
\#5323-440. See Appendix D, Drawings and Diagrams for the location of these detector inputs.

Turn the Model 49-12-2 ON and set the Background Subtract OFF, Calibrate Mode ON, and Count Time to 1 second. Press the OPER COND key to display counts and adjust the pulser to 100 mV and $1,000 \mathrm{CPM}$ rate.

Attach series "C" cable to detector connector and adjust pre-amplifier gain controls for start of counting with 100 mV pulse input.

- Sample Quad Amplifier Calibration Worksheet

A sample Quad Amplifier Calibration Worksheet is located in the appendix and may be reproduced as necessary.

9.3 Detector Efficiency

The effiencies of all detectors should be determined using calibrated sources similar in makeup to those you are looking for.

10. MAINTENANCE AND DIAGNOSTIC TROUBLESHOOTING

This section describes daily maintenance and troubleshooting procedures.

10.1 Setting the Contrast On the Displays

The LCD (Liquid Crystal Display) is controlled by the LCD interface board (LMI \#5295-512). The board is located on the right hand side of the electronics chassis. The single potentiometer on the board is used to adjust the contrast on the display. The control may be rotated in either direction while watching the LCD to obtain the desired contrast.

10.2 Initialization Failure

During initialization, all microprocessorbased boards must communicate with the central processor board. If one of these boards doesn't communicate, then the central processor tells the display to show the message " \qquad BOARD IS MISSING" and initialization ceases. The next step is figuring out the problem with that particular board, or cabling to the board. If the LCD
display board is not working correctly, the message may not be seen. Likewise, if the communication between the central processor and the LCD display board is not working correctly then no message will appear, but the "INITIALIZING ALL BOARDS... PLEASE WAIT" message will be overwritten with periods.

10.3 Troubleshooting the HVPS Board

The high voltage power supply (LMI\# 5323-746), located in the left side of the electronic chassis, has an LED array on the board. The LED array may be viewed on the HVPS board without removing the board.

The 10 lights have the following meaning:

1) Left light - + 5V REFERENCE

2) + 5V POWER

3) +15V GENERAL
4) + 5V DIGITAL
5) FEET/FRISKER FAIL
6) No connection
7) HANDS FAIL
8) TALKER
9) HANDS READ
10) Right light-- FEET/FRISKER READ

Lights 1 through 4 should always be on, indicating that the +5 V and +15 V supplies are good. Upon power up with all external lights and audio on (pre-initialization), the TALKER light should blink, the POWER lights and the FEET/FRISKER READ light should be on. After initialization the TALKER light will turn off and LEDS 9 and 10 will alternate between on and off as the local processor reads each high voltage.

Lights 5 or 7 will light if the high voltage read is more than 10 percent from the high voltage setpoint. However, setting either high voltage to 250 disables high voltage fail detection.

If the LEDs indicate a properly working board and the counts are too low, then the high voltage may not be getting to the detector. The following steps should locate the problem.

O The high voltage should be measured at each detector " C " connector.

O The high voltage should be measured at the cable drivers or detector cables.

10.4 Troubleshooting the Counter Boards

The two counter (LMI\# 5323-440) located in the main electronics chassis have LED arrays on the board. The LED array may be viewed on the counter board without removing the board. The 10 lights have the following meaning:

1) Left light -- No Connection
2) No Connection
3) No Connection
4) No Connection
5) +5 V DIGITAL
6) LOW COUNT1
7) LOW COUNT2
8) LOW COUNT3
9) LOW COUNT4
10) Right light--TALKER

Light 5 should always be on. Upon preinitialization the four LOW COUNT lights will be on and the TALKER LED will blink at a rate faster than once a second. The TALKER light will blink once every count time after initialization has taken place.

10.5 Troubleshooting the Central Processor Board

The central processor board (LMI \#5295-526) has one LED. The LED is located at the top of the board and indicates communication errors. Every time the LED light activates, a communication error has occurred with the central processor. The software on each board can overcome an occasional communication error. However, if the LED stays on, then a continuous communication error has occurred and operation ceases.

Model 49-12-2 Pancake Hand and Shoe Monitor

 October 2010Completely Assembled Model 49-12-2, Hand and Shoe Monitor, part no. 48-2513
10.6 LIST OF FIRMWARE:
L.C.D. 29514N04
C.P. 29511N05

CNTR 29502N12
HVPS 29513N00 (displays "32313N00")
L.E.D. 29510N05

10.7 LIST OF BOARDS:

L.C.D. 5295-512
C.P. 5295-526

QUAD COUNTERS 5323-440
DUAL HVPS 5323-746
L.E.D. DRIVER 5295-685

LVPS 5295-517
PREAMPLIFIER 5323-442
L.C.D. BACKLIGHT 5323-535
L.E.D. DISPLAY 5295-613

MAIN BACKPLANE 5295-657
CABLE DRIVER 5295-484
10.8 Spare Parts Recommendation for Monitor LMI p/n 48-2513.

Based on an inventory of between one and five units.

Part Description LMI P/N Qt'y

QUAD COUNTER (8EA PER UNIT)
5323-440 (1)
CENTRAL PROCESSOR (1 PER UNIT)
5295-526 (1)
QUAD PREAMPLIFIER (8/UNIT)
5323-442 (1)
DUAL HVPS (1/UNIT)
5323-746 (1)
LED DISPLAY DRIVER (1/UNIT)
5295-685 (1)
LCD DISPLAY DRVR (1/UNIT)
5295-512 (1)
HAND DETECTOR ASSEMBLY
4295-636 (0)
FOOT DETECTOR ASSEMBLY
4295-637 (0)
PANCAKE DETECTOR
01-5008 (5)
REPLACEMENT BACKUP BATTERY
21-9693 (1)
LCD DISPLAY (AND711AST-30)
HVPS EXTENDER BRD.
QUAD AMP EXTENDER BRD.
ELECTRONICS FUSE 1 AMP
ALARM LAMP CM-756
07-6360 (1)
5323-631 (1)
5323-632 (1)
21-9277 (2)
21-9375 (4)
BNC PULSER CABLE
11. PARTS LIST
11.1 LED Display Board, Drawing 295×364
Ref. No. Description Part No.

BOARD Assembled LED Display 5295-613

- DIODES

CR129-131	LED-E120 Yellow	$07-6309$
CR110	LED-E121 Green	$07-6310$
CR111,112, 114,		
123, 126, 127,		
135	LED-E118 Red	$07-6308$
CR120-121	LED-E121 Green	$07-6310$
CR118-119	LED-E119 Orange	$07-6343$

- MISCELLANEOUS

P1	CONN-102159-3	$13-8390$
*	RIBBON-102312-2	
LATCH		$13-7805$

Note: The M49-12-2 uses blank board \#6295-613, and only the LEDs needed are installed.

11.2 Detector Cable Driver Board, Drawing 295 x 275

Ref. No.	Description	Part No.
BOARD	Assembled Det Cable Driver	$5295-484$

- CAPACITORS

C111	$100 \mathrm{pF}, 3 \mathrm{kV}, \mathrm{C}$	$04-5532$
C114	$0.0047 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5547$
C124-C125	$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{DT}$	$04-5592$
C127	$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{DT}$	$04-5576$
C129	$100 \mathrm{pF}, 3 \mathrm{kV}, \mathrm{C}$	$04-5532$
C139	$100 \mathrm{pF}, 3 \mathrm{kV}, \mathrm{C}$	$04-5532$
C155	$100 \mathrm{pF}, 3 \mathrm{kV}, \mathrm{C}$	$04-5532$

- TRANSISTOR

Q135-Q136	2N3904	$05-5755$
Q142-Q143	2N3904	$05-5755$
Q146	2N3904	$05-5755$
Q154	2N3904	$05-5755$

- VOLTAGE REGULATOR

VR116
LM317LZ
05-5788

- DIODES

CR137
1N4001
07-6268

- RESISTORS

R110	10k, 1\%	12-7540
R112-R113	1 MEG	10-7028
R115	243 OHM, 1\%	12-7698
R117	100k, 1\%	12-7557
R119-R120	10k, 1\%	12-7540
R122	1 MEG	10-7028
R123	100 OHM	10-7004
R126	523 OHM, 1\%	12-7708
R128	1 MEG	10-7028
R133	100k, 1\%	12-7557
R134	10k, 1\%	12-7540
R141	10k, 1\%	12-7540

Model 49-12-2 Pancake Hand and Shoe Monitor

 October 2010R145
R147
R148
R150
R151
R152
R156

10k, 1\%
100k, 1\%
1 G
10k, 1\%
100k, 1\%
10k, 1\%
1 MEG

- MISCELLANEOUS

CONN-640456-3 MTA100
CONN-640456-2 MTA100 CLOVERLEAF-011-6809-000-599 FUSE-CCL

12-7540
12-7557
12-7686
12-7540
12-7557
12-7540
10-7028

11.3 LCD Driver Board, Drawing 295 x 292

Ref. No.

BOARD

Description
Assembled LCD Driver

5295-512

- CAPACITORS

C112
C118
C123
C125
C131
C132
C137
C138
C140
C145
C146
$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$
04-5521
$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{DT} \quad 04-5592$
$10 \mu \mathrm{~F}, 20 \mathrm{~V}$, DT
04-5592
$27 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$
$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{DT}$
04-5614
$0.0047 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$
04-5576
$1 \mu \mathrm{~F}, 35 \mathrm{~V}$, DT
04-5570
$0.0047 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$
04-5575
$0.0047 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$
04-5570
$10 \mu \mathrm{~F}, 20 \mathrm{~V}$, DT
$27 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$
04-5570
04-5592
04-5614

- TRANSISTORS

Q133
Q149
BUZ 71A
05-5820
BUZ 71A
05-5837

- INTEGRATED CIRCUITS

U113
U114
U115
U117
U120
U121
U122
U124
U126
U127
U128

MM74C923
06-6072
P80C51FA 06-6236
CD74HC573 06-6093
CD74HC14 06-6257
CD74HC573 06-6093
ICL7662 06-6261
CD74HC14 06-6257
CD74HC245 06-6267
27C512 06-6264
CDM6264 06-6098
CD74HC138 06-6104

- RESISTORS

R116
R141-R143
R144

10k TRIMMER
09-6824
4.7k

10-7014
10k

10-7016

Model 49-12-2 Pancake Hand and Shoe Monitor

October 2010
R150
0.1 OHM, 3W

12-7647

- RESISTOR NETWORK

RN119
RN155
22k SIP 10P
12-7566
22k SIP 10P
12-7566

- CRYSTALS

Y148
12 MHZ HC18
01-5224

11.4 LED/Switch Board, Drawing 295 x 484

Ref. No. Description Part No.
BOARD Assembled 8x8 LED Driver/20 Key switch 5295-685

- CAPACITORS

C 110	$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{DT}$	$04-5592$
C 116	$27 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5614$
C 122	$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{C}$	$04-5576$
$\mathrm{C} 143-\mathrm{C} 145$	$0.0047 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5570$
C 148	$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{DT}$	$04-5576$
C 149	$27 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5614$
C174	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$
C175	$100 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{DT}$	$04-5583$

- TRANSISTORS

Q112	2N7000	$05-5820$
Q126-Q128	2N7000	$05-5820$
Q130	2N7000	$05-5820$
Q172	2N3904	$05-5755$

- INTEGRATED CIRCUITS

U113	P80C51FA INTEL	06-6236
U115	87C257-200V10	06-6278
U117	CD74HC564E	06-6262
U118	UDN2595A DRIVER	06-6170
U120	UDN2981A	06-6271
U121	CD74HC238E	06-6246
U124	CD74HC14	06-6257
U165	CD74HC573E	06-6093
U173	LM358	06-6024
- DIODES		
CR159-CR163	1N4148	07-6272
RESISTORS		
R111	33 OHM, 2W, 10\%	12-7799
R119	4.7 OHM, 1/4W, 5\%	10-7095
R125	5.6 k	10-7042
R129	33 OHM, 2W, 10\%	

Model 49-12-2 Pancake Hand and Shoe Monitor October 2010

R131-R132	5.6k	10-7042
R133-R139	4.7 OHM, 1/4W, 5\% 10-7095	
R140	5.6k	10-7042
R141-R142	4.7k	10-7014
R146	10k	10-7016
R147	4.7k	10-7014
R150-R151	33 OHM, 2W, 10\%	12-7799
R177	1 MEG, 1/4W, 5\%	10-7028
R178	10k	10-7016
- RESISTOR NETWORK		
RN114	22k SIP, 10P	12-7566
RN157	470OHM SIP, 10P	12-7825
RN158	22k DIP, 16P	12-7715
- CRYSTAL		
Y123	12 MHZ HC18 MP120	01-5224
- MISCELLANEOUS		
P62-P63	CONN-1-640456-0	
	MTA100	13-8066
P66	CONN-640456-6	
	MTA100	13-8095
P67	CONN-102153-3	13-8339

11.5 LVPS-100 VAC Input Board, Drawing 295 x 290

Ref. No.	Description	Part No.
BOARD	Assembled LVPS Input	$5295-517$
	CAPACITORS	
C173		$04-5621$
C176-C177	$2200 \mu \mathrm{~F}, 35 \mathrm{~V}, \mathrm{E}$	$04-5523$
C178	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$
C181	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5621$
C184	$2200 \mu \mathrm{~F}, 35 \mathrm{~V}, \mathrm{E}$	$04-5575$
C222	$1 \mu \mathrm{~F}, 35 \mathrm{~V}, \mathrm{DT}$	$04-5521$
C224-C25	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5575$
C229	$1 \mu \mathrm{~F}, 35 \mathrm{~V}, \mathrm{DT}$	$04-5521$
C280-C281	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5628$
C282	$470 \mu \mathrm{~F}, 25 \mathrm{~V}$	$04-5595$
C298	$100 \mu \mathrm{~F}, 35 \mathrm{~V}$	$04-5592$

- TRANSISTORS

Q168	MPS6534	$05-5763$
Q171	MPS6534	$05-5763$
Q190-Q191	MPSU01	$05-5778$
Q321-Q322	BUZ71A	$05-5837$

- VOLTAGE REGULATORS

VR277-VR278	LT1076	$05-5835$
VR283	LT1170	$05-5836$
VR323	LM340T-15	$05-5823$

- INTEGRATED CIRCUITS

U163	DS1231-20	$06-6234$
U164	TLC372I	$06-6265$
U165	LM385Z-1.2	$05-5808$
	DIODES	
CR119-CR120		MBR340

Model 49-12-2 Pancake Hand and Shoe Monitor October 2010

CR305 1N4001 07-6268

- DIODE NETWORK

CRN268
HDSP-4830
07-6336

- RESISTORS

R131	15k, 1\%	$12-7545$
R132	$3.4 \mathrm{k}, 1 \%$	$12-7600$
R133	10 k	$10-7016$
R134	$3.4 \mathrm{k}, 1 \%$	$12-7600$
R135	$15 \mathrm{k}, 1 \%$	$12-7545$
R136	$2.21 \mathrm{k}, 1 \%$	$12-7509$
R137	1 k	$10-7009$
R138	10 k	$10-7016$
R139	$1.24 \mathrm{k}, 1 \%$	$12-7703$
R140	$19.6 \mathrm{k}, 1 \%$	$12-7530$
R141	10 k	$10-7016$
R142-R143	1 k	$10-7009$
R145-R147	10 k	$10-7016$
R148-R150	100 k	$10-7023$
R151	$5.9 \mathrm{k}, 1 \%$	$12-7616$
R152	10 k	$10-7016$
R153	2.7 k	$10-7055$
R155	100 k	$10-7023$
R157	$2.87 \mathrm{k} .1 \%$	$12-7649$
R159	$2.87 \mathrm{k}, 1 \%$	$12-7649$
R160	$2.21 \mathrm{k}, 1 \%$	$12-7509$
R161	2.7 k	$10-7055$
R262	680 OHM	$10-7056$
R264-R265	2.7 k	$10-7055$
R269	680 OHM	$10-7056$
R270	2.7 k	$10-7055$
R341	$12.1,1 \%$	$12-7628$
	INDUCTOR	
L193-L194	PE92102K 100UH	$21-9672$
L195	PE92114K 55UH	$21-9673$

Model 49-12-2 Pancake Hand and Shoe Monitor

October 2010
11.6 Central Processor Board, Drawing 295×302

Ref. No.	Description	Part No.
BOARD	Assembled Central Processor	$5295-526$
• CAPACITORS		
C113		$04-5614$
C122	$18 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5635$
C150 C	$04-5576$	
C155	$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{DT}$	$04-5521$
C165	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5635$
C166	$18 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5614$

- INTEGRATED CIRCUITS

U111CD74HC14	$06-6257$
U11580C51FA	$06-6236$
U117DS1211	$06-6255$
U120CD74HC573	$06-6093$
U121MM58274	$06-6254$
U127CDM6264	$06-6098$
U12927C512	$06-6264$
U141ICL7667	$06-6250$

- DIODES

CR118	SLH56-VR3	$07-6308$
CR151	1N5817	$07-6290$

- RESISTORS

R110	100k	$10-7023$
R130	1 k	$10-7009$
R135	330 OHMS	$10-7053$
R138	1 k	$10-7009$

- RESISTOR NETWORK

RN116 22k SIP 10P 12-7566

- CRYSTALS

Model 49-12-2 Pancake Hand and Shoe Monitor

October 2010

11.7 Backplane Board, Drawing 295 x 384

Ref. No.	Description	Part No.
BOARD	Assembled Backplane	$5295-657$
	CONNECTORS	
J1-J2		$13-8046$
J3	CJ50-50B-10	$13-8316$
J4	D PLUG CBD21WA4F3	$13-8046$
J5	CJ50-50B-10	$13-8316$
J6-J8	D PLUGCB21WA4F3S6000	$13-8046$
J11	CJ50-50B-10	$13-8314$
P50	D PCB CBD27W2F3S6000	$13-8066$
P51-P52	1-640456-0 MTA100X10	$13-8057$
P94	640456-5 MTA100X5	$13-8088$
P95	640456-4 MTA100X4	$13-8094$
P96	102153-4 MTA100X9	$13-8338$
P97	640445-6 MTA156X6	$13-8071$
P98	640456-5 MTA100X5	$13-8057$
P99	640456-6 MTA100X6	$13-8095$

11.8 Backlight Power Supply Board, Drawing 295 x 309

Ref. No.	Description	Part No.
BOARD	Assembled Backlight Power Supply	5295-535
- CAPACITORS		
C110	$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{DT}$	04-5592
C111	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	04-5521
- RESISTORS		
R112	0.1 OHM, 3W, 1\%	12-7647
- MISCELLANEOUS		
P90	CONN-640456-3	
	MTA100	13-8081
P91	CONN-640456-5	
	MTA100	13-8057
*	POWER SUPPLY-	
	CXA-L10A	21-9689
*	INSULATING SPACER-	
	939-125	18-8960

Ref. No.	Description	Part No.
BOARD	Assembled Quad Counter	5323-440
	CAPACITORS	
C13	$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{DT}$	04-5576
C14-C15	27pF, 100V, C	04-5614
	TRANSISTORS	
Q16	2N7000	05-5820
	INTEGRATED CIRCUITS	
U5	CD74HC14	06-6257
U9	CD74HC00	06-6260
U17-U19	CD74HC573	06-6093
U21	27C512-15N	06-6264
U22	CDM6264 06-6098	
U23-U26	LS7062	06-6201
U27	80C51FA	06-6236
U28	CD74HC14	06-6257
	DIODE NETWORK	
CRN20	HDSP-4830	07-6336
	RESISTORS	
R29-R30	100k	10-7023
	RESISTOR NETWORK	
RN31	220k SIP 10P	12-7578
RN32	22k SIP 10P	12-7566
RN33	220k SIP 10P	12-7578
RN34	2.2k SIP 8P	12-7776
	CRYSTALS	
Y12	12MHZ HC18	01-5224

11.10 Quad Preamp Board, Drawing 323 x 263

Ref. No.	Description	Part No.
BOARD	Assembled Quad Preamp	5323-442
-	CAPACITORS	
C134	$22 \mu \mathrm{~F}, 35 \mathrm{~V}$, DT	04-5594
C135	$100 \mu \mathrm{~F}, 15 \mathrm{~V}, \mathrm{DT}$	04-5583
C138	$1 \mu \mathrm{~F}, 35 \mathrm{~V}, \mathrm{DT}$	04-5575
C140	$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{DT}$	04-5576
C141	330pF, 100V, C	04-5531
C142-C143	10pF, 100V, C	04-5573
C144	$100 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	04-5527
C145	10pF, 100V, C	04-5573
C147	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	04-5521
C148	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	04-5523
C149	10pF, 100V, C	04-5573
C150	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	04-5521
C151	47pF, 100V, C	04-5533
C152	10pF, 100V, C	04-5573
C153	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	04-5521
C154	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	04-5523
C158	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	04-5521
C159	10pF, 100V, C	04-5573
C160-C161	100pF, 100V, C	04-5527
C162-C163	47pF, 100V, C	04-5533
C164	$100 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	04-5527
C165	47pF, 100V, C	04-5533
C166	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	04-5521
C169	10pF, 100V, C	04-5573
C170	100pF, 100V, C	04-5527
C171	10pF, 100V, C	04-5573
C172-C173	47pF, 100V, C	04-5533
C174-C175	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$, C	04-5521
C177	100pF, 100V, C	04-5527
C178	47pF, 100V, C	04-5533
C179	$10 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	04-5573
C180-C181	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	04-5521
C182	10pF, 100V, C	04-5573
C183	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$, C	04-5521
C186	10pF, 100V, C	04-5573
C187	100pF, 100V, C	04-5527

Model 49-12-2 Pancake Hand and Shoe Monitor October 2010

C188	$10 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5573$
C 189	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$
C 190	$100 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5527$
C 191	$47 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5533$
C 192	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$
C226	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5523$
C233	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5523$
C236	$1 \mu \mathrm{~F}, 35 \mathrm{~V}, \mathrm{DT}$	$04-5575$
C237	$330 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5531$
C256	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5523$
C263	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5523$
C266	$1 \mu \mathrm{~F}, 35 \mathrm{~V}, \mathrm{DT}$	$04-5575$
C267	$330 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5531$
C270	$1 \mu \mathrm{~F}, 35 \mathrm{~V}, \mathrm{DT}$	$04-5575$
C277	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5523$
C279	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5523$
C282	$330 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5531$
C309-C310	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$

- VOLTAGE REGULATORS

VR1 LM317LZ 05-5788

- INTEGRATED CIRCUITS

U97-U102	TLC372I	$06-6265$
U105	CD4098	$06-6066$
U109	CD4098	$06-6066$
U115	CD4098	$06-6066$
U116	CA3096	$06-6023$
U119	CD4098	$06-6066$
U258	CA3096	$06-6023$
U278	CA3096	$06-6023$
U283	CA3096	$06-6023$

- DIODES

CR300 1N4001 07-6268

- RESISTORS

R3	10k TRIMMER	$09-6822$
R7	47k	$10-7020$
R8	470k	$10-7026$
R9	10k	$10-7016$

R11	100k	10-7023
R12-R14	10k	10-7016
R15-R16	1k	10-7009
R17	10k	10-7016
R18	1k	10-7009
R19	10k	10-7016
R20	1k	10-7009
R21	47k	10-7020
R24	4.7k	10-7014
R25	10k	10-7016
R28-R29	1k	10-7009
R30-R31	47k	10-7020
R32	10k	10-7016
R34	5.6k	10-7042
R37	10k	10-7016
R38	4.7k	10-7014
R39-R41	10k	10-7016
R45-R46	10k	10-7016
R47	1k	10-7009
R48	10k	10-7016
R51-R53	10k	10-7013
R54	1k	10-7009
R55	10k	10-7016
R56	4.7k	10-7014
R57	10k	10-7016
R61	5.6k	10-7042
R62	330 OHMS	10-7053
R63	100 OHMS	10-7004
R64	10k	10-7016
R65	4.7k	10-7014
R66	47k	10-7020
R69	10k	10-7016
R70	1k	10-7009
R71	47k	10-7020
R72	1k	10-7009
R73	47k	10-7020
R76	47k	10-7020
R77	1k	10-7009
R78-R79	10k	10-7016
R80	22k	10-7070
R81	5.6k	10-7042
R82-R84	10k	10-7016
R89	1k	10-7009
R90	10k	10-7016
R94	1 MEG	10-7028
R223-R224	1 MEG	10-7028

Model 49-12-2 Pancake Hand and Shoe Monitor

 October 2010| R225 | 22k | $10-7070$ |
| :--- | :--- | :--- |
| R227 | 10k TRIMMER | $09-6822$ |
| R229 | 5.6 k | $10-7042$ |
| R230 | 100 k | $10-7023$ |
| R231 | 470 k | $10-7026$ |
| R232 | 100 OHM | $10-7004$ |
| R234 | 330 OHM | $10-7053$ |
| R235 | 10 k | $10-7016$ |
| R253-R254 | 1 MEG | $10-7028$ |
| R255 | 22 k | $10-7070$ |
| R257 | 10 k TRIMMER | $09-6822$ |
| R260 | 10 k | $10-7023$ |
| R261 | 470 k | $10-7026$ |
| R262 | 100 OHM | $10-7004$ |
| R264 | 330 OHM | $10-7053$ |
| R265 | 10 k | $10-7016$ |
| R268-R269 | 1 MEG | $10-7028$ |
| R271 | 330 OHM | $10-7053$ |
| R272 | 10 k TRIMMER | $09-6822$ |
| R274 | 100 k | $10-7023$ |
| R275 | 470 k | $10-7026$ |
| R276 | 100 OHM | $10-7004$ |
| R280 | 22 k | $10-7070$ |
| R281 | 10 k | $10-7016$ |
| R294 | 243 OHM, 1\% | $12-7698$ |
| R295-R297 | 10 k | $10-7016$ |
| R298 | $1.69 \mathrm{k}, 1 \%$ | $12-7680$ |
| R301 | 10 k | $10-7016$ |
| R308 | 10 k | $10-7016$ |

11.11 Dual HVPS Board, Drawing 323 x 447

Ref. No.	Description	Part No.
BOARD	Assembled Dual HVPS	$5323-746$

- CAPACITORS

C5	$100 \mathrm{pF}, 3 \mathrm{kV}, \mathrm{C}$	$04-5532$
C8	$0.0015 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5518$
C10	$0.0015 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5518$
C13	$0.0015 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5518$
C14-C15	$33 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5616$
$\mathrm{C} 16-\mathrm{C} 17$	$27 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5614$
C18	$470 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5555$
C19-C20	$0.047 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5565$
C21	$27 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5614$
C22-C24	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$
C29	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$
C30	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5523$
C31	$100 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5527$
C32	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$
C36	$0.0056 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5522$
C37-C38	$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{DT}$	$04-5592$
C39-C43	$1 \mu \mathrm{~F}, 35 \mathrm{~V}, \mathrm{DT}$	$04-5575$
C45-C47	$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{DT}$	$04-5576$
C48	$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{DT}$	$04-5592$
C49	$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{DT}$	$04-5576$
C143	$0.0056 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5522$
C145	$0.0015 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5518$
C148-C149	$0.0056 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5522$
C152	$0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5523$
C156	$0.1 \mu, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$
C161	$100 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{DT}$	$04-5576$
C162	$100 \mathrm{pF}, 100 \mathrm{~V}, \mathrm{C}$	$04-5527$
C166	$0.0015 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5518$
C169	$0.0015 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5518$
C172	$0.0015 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5518$
C173	$100 \mathrm{pF}, 3 \mathrm{kV}, \mathrm{C}$	$04-5532$
C177	$0.0015 \mu \mathrm{~F}, 3 \mathrm{kV}, \mathrm{C}$	$04-5518$
C180	$0.15 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{C}$	$04-5521$

Q1	MPSU51	$05-5765$
Q131	2N7000	$05-5820$
Q133	2N3904	$05-5755$
Q154	MPSU51	$05-5765$
Q171	2N3904	$05-5755$

- INTEGRATED CIRCUITS

U64	CD74HC14	$06-6257$
U65	CD4052	$06-6141$
U67	CD74HC573	$06-6093$
U69	87C257	$06-6278$
U68	AD7549JN	$06-6253$
U70	80C51FA	$06-6236$
U71-U72	LM358	$06-6024$
U73	LT1078	$06-6251$
U74	LM331	$06-6156$
U75	ICL7660	$06-6132$
U77	TLC27M7	$06-6248$
U134	LM385Z-2.5	$05-5791$
U135	LM385Z-1.2	$05-5808$
U136	LM385Z-2.5	$05-5791$
U155	TLC27M7	$06-6248$

- DIODES

CR51-CR52	1N4148	$07-6272$
CR54-CR55	MR250-2	$07-6266$
CR60-CR61	MR250-2	$07-6266$
CR63	MR250-2	$07-6266$
CR160	1N4148	$07-6272$
CR163	MR250-2	$07-6266$
CR165	MR250-2	$07-6266$
CR167-CR168	MR250-2	$07-6266$
CR176	MR250-2	$07-6266$
CR181	1N4148	$07-6272$

- DIODE NETWORKS

CRN66 HDSP4830 07-6336

- RESISTORS

Model 49-12-2 Pancake Hand and Shoe Monitor October 2010

R78	10k TRIMMER	$09-6824$
R81-R82	1 MEG TRIMMER	$09-6778$
R83-R85	100k TRIMMER	$09-6829$
R86-R87	1 G	$12-7686$
R90	820 OHM	$10-7060$
R91	8.2 k	$10-7015$
R92	2.2 MEG	$10-7052$
R93	8.2 k	$10-7015$
R94	56 k	$10-7021$
R95	100 k	$10-7023$
R96	33 k	$10-7019$
R97	$100 \mathrm{k}, 1 \%$	$12-7557$
R98	100 k	$10-7023$
R99-R101	4.7 k	$10-7014$
R102	10 k	$10-7016$
R103	$6.81 \mathrm{k}, 1 \%$	$12-7619$
R104	$10 \mathrm{k}, 1 \%$	$12-7540$
R105	$100 \mathrm{k}, 1 \%$	$12-7557$
R106	47 OHM	$10-7002$
R109	10 k	$10-7016$
R110	22 k	$10-7070$
R111	100 k	$10-7023$
R112	470 k	$10-7026$
R113	470 k	$10-7026$
R114	4.7 k	$10-7014$
R115	1 MEG	$10-7028$
R121-R122	2.2 k	$10-7012$
R123	5.6 k	$10-7042$
R141	4.7 MEG	$10-7030$
R142	1 MEG	$10-7028$
R151	4.7 k	$10-7014$
R157	1 G	$12-7686$
R158	4.7 MEG	$10-7030$
R159	10 k	$10-7016$
R164	470 k	$10-7026$
R170	1 MEG	$10-7028$
R174	1 MEG	$10-7028$
R175	1 G	$12-7686$
R178	1 MEG TRIMMER	$09-6778$
R179	100 k	$10-7023$
R182	470 k	$10-7026$
R183	1 MEG TRIMMER	$09-6778$
R184	22 k	$10-7070$

- RESISTOR NETWORK

Model 49-12-2 Pancake Hand and Shoe Monitor

 October 2010RN128
RN129
RN130

220K SIP 10P
22K SIP 10P
2.2k SIP 8P

12-7578
12-7566
12-7776

- TRANSFORMER

T138
T153
HVPS
4275-037
HVPS
4275-037

- CRYSTAL

Y188
12 MHZ HC18
01-5224

- MISCELLANEOUS

HD189	CONN-640456-2	
	MTA100	13-8073
P6	D PCB	
	CBD27W2M5B80000	13-8313
P7	CONN-640456-2	
	MTA100	13-8073
P8	CONN-640456-4	
	MTA100	13-8088
*	CLOVERLEAF-	
	011-6809-000-599	18-8771
*	CARD EJECTOR-	
	CE-110-062	22-9725

Model 49-12-2 Pancake Hand and Shoe Monitor
October 2010

Model 49-12-2 Pancake Hand and Shoe Monitor

October 2010
APPENDIX A

HVPS BOARD CALIBRATION

1) Rotate chassis door down and turn instrument "ON". Access to the high voltage board is through holes on the left end of the chassis.
2) Push MAIN MENU key to select the setup menu.
a. Push 1 to select SETUP MENU. Enter the required security code. Push ENT to go to SETUP MENU II.
b. Push 2 to select BACKGROUND UPDATE INTERVAL. Set interval to 999 and push ENT. Push BKSP to return to SETUP MENU I.
c. Push 2 to select HIGH VOLTAGE SETUP. Set HANDS and FEET/FRISKER high voltage to 900 and push ENT.
d. Select OPER COND key to view the high voltage.
3) The HANDS high voltage should be measured by connecting a Ludlum Model 500 Pulser or equivalent to the LHB connector located in the floor of the hand cabinet. Measure the FEET/FRISKER high voltage at thefrisker connector located underneath the hand cabinet and on the right hand side.
4) Adjust the potentiometer labelled $\underline{\mathrm{UH}}$ (R183) until the actual high voltage output is 900 VDC ± 3 VDC.

Hands High Voltage: \qquad V.
5) Now measure the FEET /FRISKER high voltage at the frisker connector.
6) Adjust the potentiometer labelled LH (R81) until the actual high voltage output is 900 VDC ± 3 VDC.

Foot High Voltage: \qquad V.
7) Measure the reference voltage for high voltages supply by carefully inserting test lead through access hole at pins 1 and 2 of the TLC27M7 op amps.
8) For the hands reference measure through the lower access hole and adjust UR (R178) if necessary for a voltmeter reading of 0.900 VDC $\pm 3 \mathrm{mV}$.

Hands Reference Voltage: \qquad mV .

Model 49-12-2 Pancake Hand and Shoe Monitor October 2010

9) For the feet reference measure through the upper access hole and adjust LR (R82) if necessary for a voltmeter reading of $0.900 \mathrm{VDC} \pm 3 \mathrm{mV}$.

Feet Reference Voltage: \qquad mV .
10) Now view the LCD HV Readouts and adjustif necessary the HV CAL control located on the outer edge of the HVPS board. The Readouts should be 900 VDC ± 9.
11) The Threshold and Window Reference voltages are generated on the HVPS board. Access to these adjustments are again through the left end of the chassis.
12) Place a voltmeter ground lead on pin 1 of connector P8, located on the edge of the HVPS board.
13) Measure the voltage at pin 2 of P8 and adjust the AT potentiometer (R83) until the meter reads 2.000 VDC ± 0.02 VDC. Note: This is the threshold reference voltage used on the m49-12-2. It will yield a sensitivity level of 100 mV and is the beta-gamma and alpha threshold from a pancake G.M. detector.

Threshold Reference: \qquad VDC.
16) Return the Background update time interval to the original values. The high voltage will normally be left at this 900 V level for pancake tubes.

Model 49-12-2 Pancake Hand and Shoe Monitor

October 2010

QUAD AMPLIFIER BOARD CALIBRATION

a) Turn monitor on.

Push MAIN MENU key.
\#1 key to select SETUP MENU,
Enter security code,
\#3 key to select COUNT TIME,
\#1, ENT key to enter value,
Press ENT key to accept value.
Press ENT to continue to SETUP MENU II.
\#2 key to select BACKGROUND SUBTRACT OFF.
Press ENT to accept.
\#1 key to select BACKGROUND UPDATE INTERVAL, \#9, \#9, \#9, ENT key to enter value,
Press ENT key to accept value.
\#4 key to select SET CALIBRATE MODE ON/OFF
\#2 key to set ON. Press ENT key twice to accept value.
Select OPER COND key to return to operating conditions screen.
b) Adjust pulser for a 100 mV pulse height and 1000 CPM.
c) Use a 39 " "C" cable attached to pulser and open the hand cabinet lid.
d) Disconnect the LHB detector cable and attach "C" cable to this input.
e) Rotate potentiometer (R3) labelled SIG1 on board AMP1 until counts just cease as viewed in the upper LCD.

Repeat steps d) \& e) for all other channels (LHP,RHP, \& RHB), the two feet channels and the frisker channel on the other amplifier board (LF and RF). To access the feet and frisker inputs it is necessary to open the plastic wrap cover and remove the roll of plastic.

Model 49-12-2 Pancake Hand and Shoe Monitor October 2010

SETUP EXAMPLES

1. Example \#1

The M49-12-2 is placed at the egress of a laundry. All personnel leaving the laundry must check through the Hand and Shoe Monitor. Background in this area is relatively stable.

Setup: The best alarm calculation mode to use would probably be the MAX SENSITIVITY mode. The sensitivity in this mode is governed by the sigma factors. Too high a sigma factor gives poor sensitivity, and too low a sigma factor gives an unacceptable false alarm rate. The following setup gives some rationale for the numbers entered.

High voltage (hands): 900
High voltage (feet): 900
Count time: $\quad 10$ seconds to give good sensitivity but not excessive delay
Background Update Limit:10 minutes
Background Subtract: On
Alarm Hold Time: 10 seconds
Low Count Alarms: (see below)
Beta Sigma: $\quad 3.10$ gives false alarm rate of 1 in 1000
Beta Hand Efficiency: 26\% as found in efficiency operation
Beta Foot Efficiency: 12\% as found in efficiency operation
Confidence Level: 90\%
Maximum Allowable Source:1500 dpm
Alarm Calculation Mode:Maximum Sensitivity
When all the above parameters are set, the M49-12-2 updates the background for the new count time and then the READY light turns on. The beta sensitivity, as shown in the OPERATING CONDITIONS window is approximately 1500 dpm . The low count alarms can now be set. If the lowest hand background is about 300 counts per minute, set the hand low count alarms at 200 counts per minute. Similarly, the foot low count alarms should be set based on the normal background from these detectors. The LOW COUNT alarm will then activate if the drops. The poly roll is not used here because its use completely blocks alpha particles and hinders beta senitivity. The false alarm rate (1 in 1000) refers to a single detector. Since the M49-12-2 has six detectors, the false alarm rate could be restated as 6 in 1000 employees or 0.6%. For a 1 in 1000 employee false alarm rate, the sigma factor should be 3.54 .

2. Example \#2

The M49-12-2 is used during an outage period at a power plant. It is desired to check people through a certain area as quickly as possible, but not allow anyone through with more than 2000 dpm beta contamination or 1000 dpm alpha contamination. Background fluctuates considerably in this area.

Model 49-12-2 Pancake Hand and Shoe Monitor

October 2010

Setup: The best alarm calculation mode to use would probably be the MINIMUM COUNT TIME mode. The following setup gives some rationale for the numbers entered.

High voltage (hands): 900
High voltage (feet): 900
Count time: 10 seconds (see below)
Background Update Limit:10 minutes
Background Subtract: On
Alarm Hold Time: 10 seconds
Low Count Alarms: (see below)
Beta Sigma: $\quad 3.10$ gives false alarm rate of 1 in 1000
Beta Hand Efficiency: 26\% as found in efficiency operation
Beta Foot Efficiency: 12\% as found in efficiency operation
Confidence Level: 90\%
Desired Source Size: 2000 dpm
Maximum Count Time: 25 seconds
Alarm Calculation Mode:Minimum Count Time

When all the above parameters are set, the M49-12-2 calculates the count time required to achieve the desired sensitivity and updates the background for the new count time and then the READY light turns on. The count time will fluctuate, becoming longer as the background rises, and shorter as the background becomes less. If the background ever rises high enough so that 2000 dpm sensitivity cannot be achieved in under 25 seconds, the HIGH BKGND alarm will activate. The background update interval is fairly short, to ensure that the background is re-evaluated frequently. The low count alarms should be set relatively low since the background and count time can both decrease. Setting the low count alarms to 0000 will cause a low count alarm only when any detector is completely "dead" or disconnected.

Model 49-12-2 Pancake Hand and Shoe Monitor
October 2010

