LUDLUM MODEL 3-97

SURVEY METER

June 2020 Serial No. 346285 and Succeeding Serial Numbers

LUDLUM MODEL 3-97

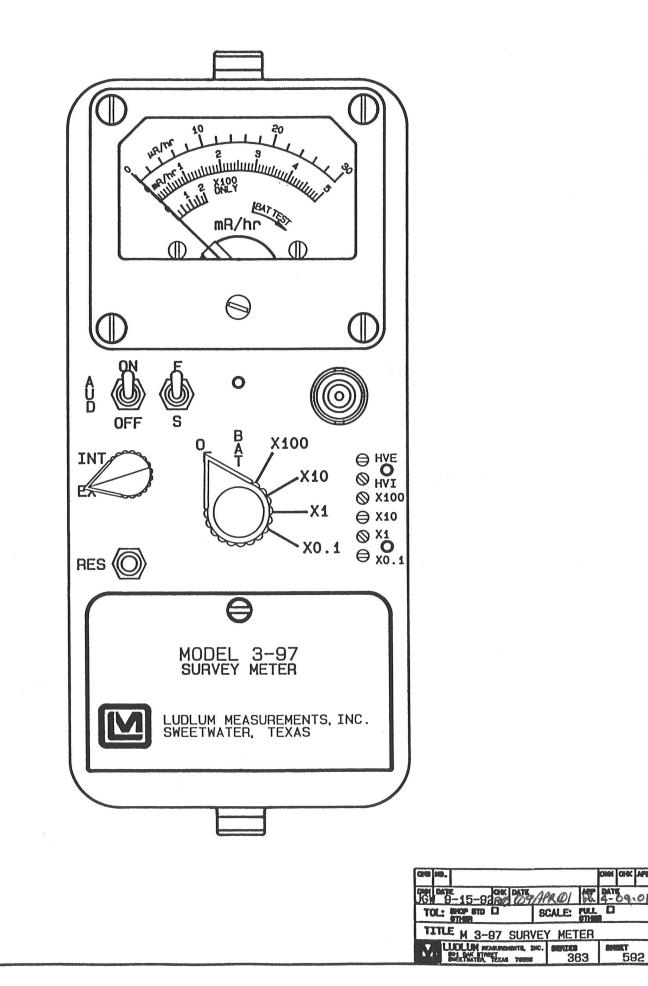
SURVEY METER

June 2020 Serial No. 346285 and Succeeding Serial Numbers

STATEMENT OF WARRANTY

Ludlum Measurements, Inc. warrants the products covered in this manual to be free of defects due to workmanship, material, and design for a period of twelve months from the date of delivery. The calibration of a product is warranted to be within its specified accuracy limits at the time of shipment. In the event of instrument failure, notify Ludlum Measurements to determine if repair, recalibration, or replacement is required.

This warranty excludes the replacement of photomultiplier tubes, G-M and proportional tubes, and scintillation crystals which are broken due to excessive physical abuse or used for purposes other than intended.


There are no warranties, express or implied, including without limitation any implied warranty of merchantability or fitness, which extend beyond the description of the face there of. If the product does not perform as warranted herein, purchaser's sole remedy shall be repair or replacement, at the option of Ludlum Measurements. In no event will Ludlum Measurements be liable for damages, lost revenue, lost wages, or any other incidental or consequential damages, arising from the purchase, use, or inability to use product.

RETURN OF GOODS TO MANUFACTURER

If equipment needs to be returned to Ludlum Measurements, Inc. for repair or calibration, please send to the address below. All shipments should include documentation containing return shipping address, customer name, telephone number, description of service requested, and all other necessary information. Your cooperation will expedite the return of your equipment.

LUDLUM MEASUREMENTS, INC. ATTN: REPAIR DEPARTMENT 501 OAK STREET SWEETWATER, TX 79556

800-622-0828 325-235-5494 FAX 325-235-4672

IN CHK APP

592

M3-97 Survey Meter

TABLE OF CONTENTS

1. GENERAL	1
2. SPECIFICATIONS	1
3. DESCRIPTION OF CONTROLS AND FUNCTIONS	2
4. OPERATING PROCEDURES	3
5. CALIBRATION 5.1 Detector Operating Point 5.1.1 Internal Detector Calibration 5.1.2 External Detector Calibration 5.1.3 CPM and mR/hr Meterface	4
6. MAINTENANCE	5
 7. THEORY OF OPERATION 7.1 Input 7.2 Amplifier 7.3 Discriminator 7.4 Audio 7.5 Digital Analog Convertor 7.6 Scale Ranging 7.7 Meter Drive 7.8 Meter Compensation 7.9 Fast/Slow Time Constant 7.10 Low Voltage Supply 7.11 Low Voltage Reference 7.12 High Voltage Supply 	
PARTS LIST Main Circuit Board, Drawing 464 X 633 Calibration Board, Drawing 363 X 528 Chassis Wiring Diagram, Drawing 363 X 582	8 9
DRAWINGS AND DIAGRAMS	11

1. GENERAL

The Model 3-97 is a portable survey instrument with four linear ranges. Typical range values are 0-3000 μ R/hr for the internal detector and 0-200 mR/hr for the external detector. The instrument features an internal scintillator that detects low-level gamma radiation, and also features the capability of utilizing an external probe by a switch on the front panel labeled INT/EXT. Separate high-voltage adjustments for the internal and external probes are provided. The high-voltage power supply is regulated and adjustable from 200 to 1200 V. The unit body is made of cast aluminum, including the meter housing. The can is 0.23 cm (0.090 in.) aluminum. Other operating features of the instrument include a unimorph speaker mounted to the instrument can with an audio ON-OFF capability, fast-slow meter response, meter reset button, and a six-position switch for selecting battery check or scale multiples of X0.1, X1, X10, and X100. Each range multiplier has its own calibration potentiometer.

Most Ludlum Measurements GM probes will operate on this unit, as will many of the scintillation detectors. The external high voltage is factory set for 900 V. For special requirements, it may be adjusted for operation with any GM or scintillator tube between 400 and 1500 V.

The unit is operated with two "D" cell flashlight batteries for operation from approximately 0 to 65 °C (32 to 150 °F). For temperature operation to -18 °C (0 °F), either very fresh alkaline or rechargeable NiCd batteries may be used. Battery drain averages 17 milliamperes.

2. SPECIFICATIONS

RANGES: four linear range multiples of X0.1, X1, X10, and X100; 0-3000 μ R/hr for the internal detector and 0-200 mR/hr for the external detector; meter scale representation of 0-30 μ R/hr, 0-5 mR/hr, and 0-2 mR/hr (X100 range only)

METER: 1mA, 6.4 cm (2.5 in.) scale, with pivot-and-jewel suspension

METER COMPENSATION: temperature compensation is provided by thermistors on the main board

INPUT SENSITIVITY: 30 mV, (±10 mV)

HIGH VOLTAGE: externally adjustable from 400 to 1500 V

RESPONSE: typical time required for meter needle to deflect to 90% of final meter reading: 4 seconds in "F" position, 22 seconds in "S" position **LINEARITY**: ±5% of full scale

INTERNAL DETECTOR: 2.5 x 2.5 cm (1 x 1 in.) NaI(Tl) scintillator

POWER: two standard "D" size batteries

BATTERY LIFE: exceeds 600 hours with a fresh set of alkaline "D" cell batteries

BATTERY DEPENDENCE: instrument calibration changes less than 3% within battery check limits on meter

AUDIO: built-in unimorph speaker with an ON-OFF switch

CONNECTOR: series "C," 706 U/G; BNC or MHV may also be provided

SIZE: 10.7 x 8.9 x 21.6 cm (4.2 x 3.5 x 8.5 in.) (H x W x L); height 24.1 cm (9.5 in.) with handle

WEIGHT: 1.4 kg (3 lb); 2 kg (4.4 lb) with external detector and batteries

FINISH: drawn-and-cast aluminum, with computer-beige polyurethane enamel and silk-screened nomenclature

3. DESCRIPTION OF CONTROLS AND FUNCTIONS

Range Multiplier Selector Switch: a sixposition switch marked OFF, BAT, X100, X10, X1, X0.1. Turning the range selector switch from OFF to BAT position provides the operator a battery check of the instrument. A BAT check scale on the meter provides a visual means of checking the battery status. Moving the range selector switch to one of the range multiplier positions (X0.1, X1, X10, X100) provides the operator with typical overall ranges of 0-3000 μ R/hr and 0-200 mR/hr. Multiply the scale reading by the multiplier for determining the actual reading.

AUD ON-OFF Toggle Switch: In the ON position, the switch energizes the unimorph speaker, located on the left side of the instrument. The frequency of the clicks is relative to the rate of the incoming pulses. The higher the rate, the higher the audio frequency. The audio should be turned OFF when not required to reduce battery drain.

F-S Toggle Switch: Provides meter response. Selecting the fast, "F" position, of the toggle switch provides 90% of the final meter reading in four seconds. In slow, "S" position, 90% of the final meter reading takes 22 seconds. In the "F" position, there is fast response and large meter deviation. In the "S" position, there is a slow response and damped meter deviation.

RESET Pushbutton: When depressed, provides a rapid means to drive the meter to zero.

INT/EXT Switch: a two-position switch used to alternate between the internal scintillation detector and the external probe. In the INT position, the internal detector is utilized. In the EXT position, the external probe is utilized.

H.V. Adjustment: provides a means to vary the high voltage from 400 to 1500 volts. The high voltage setting may be checked at the probe connector with an appropriate voltmeter.

Range Calibration Adjustments: recessed potentiometers located under the calibration cover, on the right side of the front panel. These adjustment controls allow individual calibration for each range multiplier.

4. OPERATING PROCEDURES

Note: To open the Battery Lid, twist the lid button counterclockwise a quarter-turn. To close, twist clockwise a quarter-turn.

• Open the Battery Lid and install two "D" size batteries. Note (+) (-) marks on the inside of the lid. Match the battery polarity to these marks.

NOTE: The center post of flashlight battery is positive. Close the battery box lid.

- Switch the range switch to BAT. The meter should deflect to the battery check portion of the meter scale. If the meter does not respond, recheck that the batteries have proper polarity.
- Turn the INT/EXT switch to EXT.
- Connect a detector to the M3-97.
- Turn the instrument range switch to X100. Expose the detector to a check source. The speaker should click with the AUDIO ON-OFF switched to ON.
- Move the range switch to the lower scales until a meter reading is indicated. The toggle switch labeled F-S should have fast response in "F"and slow response in "S".
- Depress the RES switch. The meter should zero.
- Turn the INT/EXT switch to INT and hold the check source to the end of the can until a meter reading is indicated.

Note: To assure proper operation of the instrument between calibrations, an instrument operational check should be performed prior to use. A reference reading with a check source should be obtained at the time of initial calibration or as soon as possible afterwards, for confirming correct operation. Confirm the proper reading on each scale.

If the instrument does not read within 20% of the proper reading, it should be sent in to a calibration facility for recalibration.

5. CALIBRATION

5.1 Detector Operating Point

CAUTION: The detector operating voltage is connected to both detectors at all times, regardless of which position the detector INT/EXT switch is set. Typically an external GM type detector is used and the maximum operating voltage is 1000 Vdc; therefore, the internal detector operating voltage must be kept below 1000 Vdc.

5.1.1 Internal Detector Calibration

• Switch the INT/EXT switch to the INT position. Expose the unit to a ²⁴¹Am source and develop an operating voltage (HV) versus count-rate plot. Adjust the HVI potentiometer to vary the internal detector operating voltage. The operating voltage can be monitored through the external connector. Set the operating voltage at the flattest portion of this curve.

Note: Measure high voltage with a Model 500 pulser or a high-impedance voltmeter with a minimum of 1000 megohm input resistance.

- The Model 3-97 internal scintillation detector radiation response is energy dependent. An energy response curve is included in the drawing section at the back of this manual.
- Place the Model 3-97 on a certified calibration range. Use the indentations on the sides of the can to position the internal detector to the center of the calibration line. Calibrate each scale for the best fit at two-thirds and one-third-scale readings (10 and 20 µR/hr). Confirm that the calibration is within 10% of each reading.

If the appropriate radiation fields are not available, switch the instrument to the lowest

calibrated range position and perform the following:

- Connect a Ludlum Model 500 Pulser to the external connector and switch the INT/EXT switch to the EXT position.
- With the Model 3-97 switch to the lowest calibrated range position, determine the pulse rate versus μ R/hr calibration point. Decade the pulser and Model 3-97 to the next lower range and calibrate the meter to the corresponding point determined in the previous step. Decade down and calibrate the remaining range positions.

After all the range positions are calibrated, monitor the background radiation level. Typical radiation background levels range from 5-10 μ R/hr.

5.1.2 External Detector Calibration

For most external GM detector applications, the detector operating may be adjusted for 900 Vdc. Set the HV to the recommended detector operating voltage.

• Place the external GM detector on a certified calibration range. Check each range position at three-fourths and one-fourth-scale and confirm the reading is within 10%. If the reading error is greater than 10% but less than 20% of reading, record the field versus the meter reading at three-fourths and one-fourth scale. State the correction factor on the calibration sticker for the specific range.

5.1.3 CPM and mR/hr Meterface

• For the combination CPM and mR/hr meter face, calibrate the external detector with a calibrated certified range. Record the field versus CPM meter reading for the internal detector at various points on the calibration range.

6. MAINTENANCE

Instrument maintenance consists of keeping the instrument clean and periodically checking the batteries and the calibration.

To assure proper operation of the instrument between calibrations, the instrument should be tested with a check source prior to each use. A reference reading should be obtained when exposed to the check source in a constant and reproducible manner at the time of calibration. If the instrument response differs from the reference reading by more than 20%, the instrument should be returned to a calibration facility for maintenance, repair, or recalibration, as required.

Recalibration should be accomplished after any maintenance or adjustment of any kind has been performed on the instrument. Battery replacements are not considered to be maintenance and do not normally require the instrument to be recalibrated.

Ludlum Measurements recommends recalibration at intervals no greater than one year. Check the appropriate regulations to determine required recalibration intervals.

The batteries should be removed and the battery contacts cleaned of any corrosion at least every three months. If the instrument has been exposed to a very dusty or corrosive atmosphere, more frequent battery servicing should be used.

Use a spanner wrench to unscrew the battery contact insulators, exposing the internal

contacts and battery springs. Removing the handle will facilitate access to these contacts.

Note: Never store the instrument over 30 days without removing batteries. Although this instrument will operate at very high ambient temperatures, battery seal failure can occur at temperatures as low as 38 °C (100 °F).

7. THEORY OF OPERATION

7.1 Input

The external detector pulses are coupled from the detector through C3 to emitter follower Q5. R10 and R20 provide bias. R32 protects Q5 from input shorts. R38 couples the detector to the high-voltage supply.

The internal detector (V1) pulses are coupled from the detector through C27 to emitter follower Q7. R21 and R41 provide bias to Q7. R40 protects Q7 from input shorts. R39 couples V1 to the high-voltage supply.

The internal detector is used only when the INT/EXT switch is in the INT position. In the EXT position, the external detector is used. When in the EXT position, P1-13 is grounded, turning off Q6, allowing the pulses from Q5 to pass on to the amplifier. P1-14 is opened, allowing R4 to bias Q8, pulling the pulses from the base of Q7 to ground and blocking them from the amplifier. In the INT position, P1-14 is grounded, turning off Q8, allowing the pulses from Q7 to pass on to the amplifier. P1-13 is opened allowing R47 to bias Q6, pulling the pulses from the base of Q5 to ground and blocking them from the amplifier.

7.2 Amplifier

A self-biased amplifier provides gain in proportion to R33, divided by R6 for the external detector and R33, divided by R44 for the internal detector. Pins 1, 2, and 6 of U9A provide amplification. U1 is coupled as a current mirror to provide a load for U4. The output self-biases to 2 Vbe (approximately 1.4 volts) at pin 1 of U4. This provides just enough bias current through pin 3 of U4 to conduct all of the current from the current mirror. Positive pulses from pin 7 of U4 are coupled to the discriminator.

7.3 Discriminator

Comparator U5 provides discrimination. The discriminator is set by the voltage divider, R8 and R5, coupled to pin 3 of U5. The comparator output pulses are coupled to pin 5 of U6 for meter drive and pin 12 of U6 for audio.

7.4 Audio

Discriminator pulses are coupled to univibrator pin 12 of U6. Front panel audio ON-OFF selector controls the reset at pin 13 of U6. When ON, pulses from pin 10 of U6 turn on oscillator U2, which drives the can-mounted unimorph. The speaker tone is set by R13 and C12; duration by R36 and C23.

7.5 Digital Analog Convertor

Pins 10-15 of U1 are coupled as a current mirror. For each pulse of current through R9, an equal current is delivered to C22. This charge is drained off by R42. The voltage across C22 is proportional to the incoming count rate.

7.6 Scale Ranging

Detector pulses from the discriminator are coupled to univibrator pin 5 of U6. For each scale change, the pulse width of pin 6 of U6 is changed by a factor of 10, with the actual pulse width being controlled by the front-panel calibration controls and their related capacitors. This arrangement allows the same current to be delivered to C22 by one-tenth of a count on the X.1 range as 100 counts on X1K range.

7.7 Meter Drive

The meter is driven by the emitter of Q3, coupled as a voltage follower in conjunction with pin 1 of U3. For the battery test, the voltage follower is bypassed, and the meter movement is directly coupled to the battery through R26.

7.8 Meter Compensation

When the unit is provided with a hightorque meter movement, with 1.2 V drive, a temperature compensation circuit is provided on the main circuit board by way of components R15, R17, and R23.

7.9 Fast/Slow Time Constant

For the slow time constant, C29 is switched from the output of the meter drive to parallel C22.

7.10 Low Voltage Supply

Battery voltage is coupled to U8 and associated components (a switching regulator) to provide 5 V at pin 5 to power all logic circuits. Unregulated battery voltage is used to power the meter drive (Q3) and the high-voltage blocking oscillator (Q2).

7.11 Low Voltage Reference

U7 provides a 1.22 V precision reference for HV supply and discriminator reference.

7.12 High Voltage Supply

High voltage is developed by blocking oscillator Q2-T1 and rectified by voltage multiplier CR1, CR2, CR3, and CR4. Output voltage increases as current through Q1 increases, with maximum output voltage with Q1 saturated.

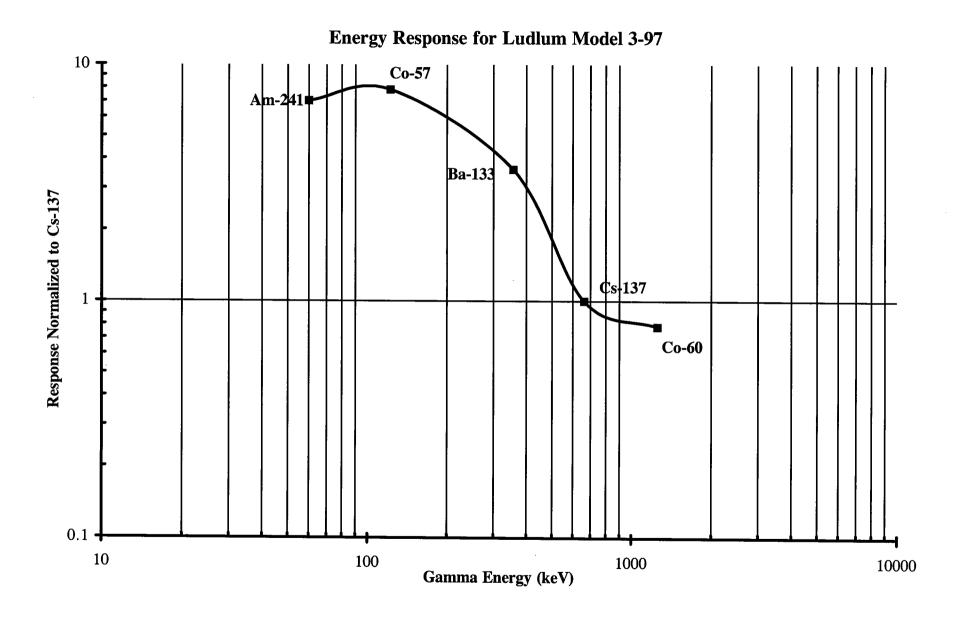
High voltage is coupled back through R12 to pin 6 of opamp U3. R2 completes the high-voltage circuit-to-ground. Highvoltage output is accomplished by setting the bias of pin 5 of U3 with R5 (internal) or R7 (external), located on the calibration circuit board. During stable operation, the voltage at pin 6 of U3 will equal the voltage at pin 5 of U3. Pin 7 of U3 will cause conduction of Q1 to increase or decrease until the high voltage seeks a level of stability.

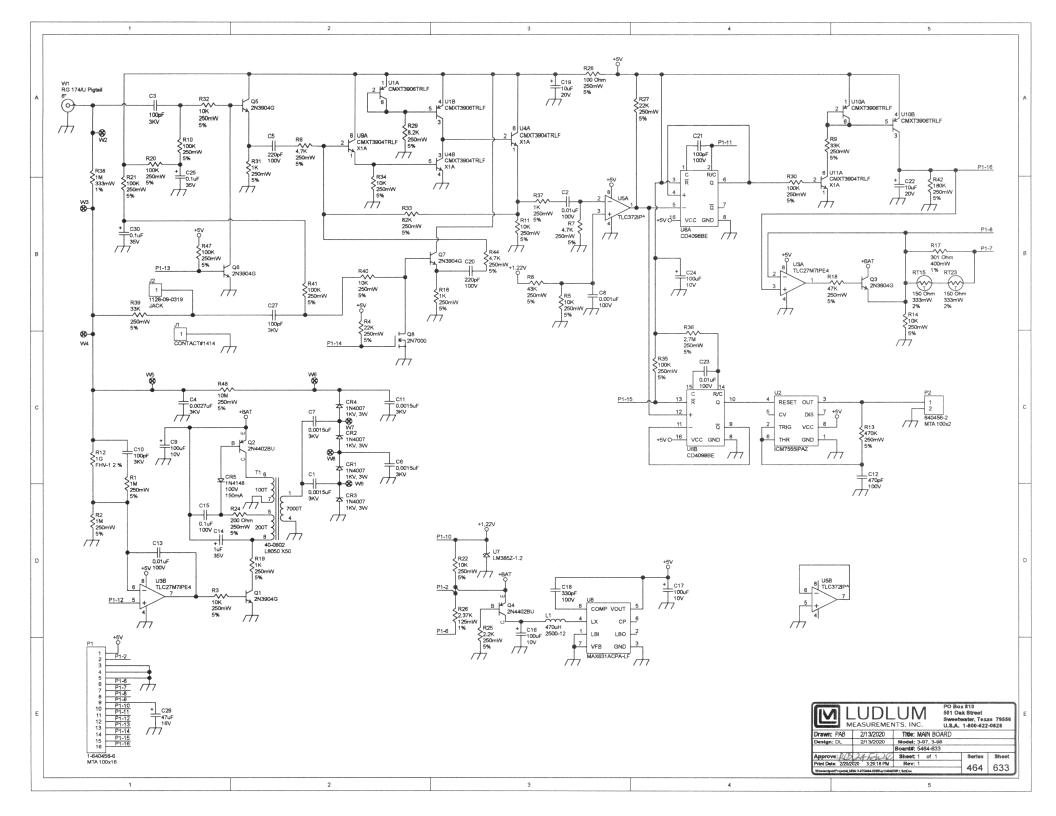
PARTS LIST

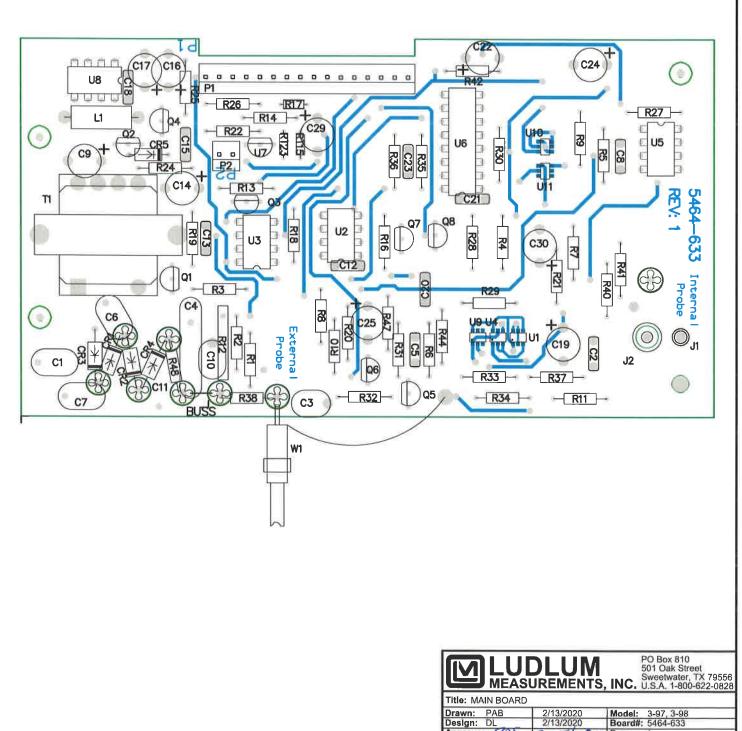
Ref. No.	Description	Part No.	Ref. No.	Description	Part No
Model 3-97 Survey Meter			U5	TLC372IP	06-6265
			U6	CD4098BE	06-6066
			U7	LM385Z-1.2	05-5808
UNIT	Completely Assembled Model	40 1410	U8	MAX631	06-6249
	3-97 Survey Meter	48-1410	U9	CMXT3904TRLF	05-5888
			U10	CMXT3906TRLF	05-5890
<u>Main Circ</u>	cuit Board, Drawing 464 x 633		U11	CMXT3904TRLF	05-5888
BOARD	Assembled Circuit Board	5464-633	DIODES		
CAPACI	TORS		CR1-CR4	1N4007	07-6274
			CR5	1N4148	07-6272
C1	0.0015µF, 3kV, C	04-5518			
C2	0.01µF, 100V, C	04-5523	RESISTORS		
C3	100pF, 3kV	04-5532			
C4	0.0027µF, 3kV, C	04-5520	R1-R2	1M, 250mW, 5%	10-7028
C5	220pF, 100V, C	04-5530	R1-R2 R3	10k, 250mW, 5%	10-7028
C6-C7	0.0015µF, 3kV, C	04-5518	R4	22k, 250mW, 5%	10-7070
C8	0.001µF, 100V, C	04-5519	R5	10k, 250mW, 5%	10-7016
C9	100µF, 10V, DT	04-5576	R6-R7	4.7k, 250mW, 5%	10-7010
C10	100pF, 3kV	04-5532	R8	43k, 250mW, 5%	10-7014
C11	0.0015µF, 3kV, C	04-5518	R9	43k, 250mW, 5%	10-7019
C12	470pF, 100V, C	04-5555	R9 R10	100k, 250mW, 5%	10-7013
C12 C13	0.01µF, 100V, C	04-5523	R10	10k, 250mW, 5%	10-7023
C13 C14	1μF, 35V, DT	04-5575	R11 R12		
C14 C15	$0.1 \mu F$, 100V, C	04-5521	R12 R13	1 G, FHV-1, 2%	12-7686
C15 C16-C17	100µF, 10V, DT	04-5576	R13	470k, 250mW, 5% 10k, 250mW, 5%	10-7026 10-7016
C10-C17	330pF, 100V	04-5531			
C18 C19	-	04-5592	R16	1k, 250mW, 5%	10-7009
	10μF, 20V, DT		R17	301 OHM, 400mW, 1%	12-7855
C20	220pF, 100V, C 100pF, 100V, C	04-5530	R18	47k, 250mW, 5%	10-7020
C21	1	04-5527	R19	1k, 250mW, 5%	10-7009
C22	10μF, 20V, DT	04-5592	R20-R21	100k, 250mW, 5%	10-7023
C23	0.01µF, 100V, C	04-5523	R22	10k, 250mW, 5%	10-7016
C24	100µF, 10V, DT	04-5576	R24	200 OHM, 250mW, 5%	10-7006
C25	0.1µF, 35V, DT	04-5574	R25	2.2k, 250mW, 5%	10-7012
C27	100pF, 3kV, C	04-5532	R26	2.37k, 1/8W, 1%	12-7648
C29	47µF, 16V, DT	04-5550	R27	22k, 125mW, 5%	10-7070
C30	0.1µF, 35V, DT	04-5574	R28	100 OHM, 250mW, 5%	10-7004
			R29	8.2k, 250mW, 5%	10-7015
TRANSIS	STORS		R30	100k, 250mW, 5%	10-7023
			R31	1k, 1/4W, 5%	10-7009
Q1	2N3904G	05-5755	R32	10k, 250mW, 5%	10-7016
Q2	2N4402BU	05-5763	R33	82k, 250mW, 5%	10-7022
Q3	2N3904G	05-5755	R34	10k, 1/4W, 5%	10-7016
Q4	2N4402BU	05-5763	R35	100k, 250mW, 5%	10-7023
Q5-Q7	2N3904G	05-5755	R36	2.7M, 250mW, 5%	10-7029
Q8	2N7000	05-5820	R37	1k, 250mW, 5%	10-7009
			R38	1M, 333mW, 1%	12-7609
INTEGR	ATED CIRCUITS		R39	33k, 250mW, 5%	10-7019
U1	CMXT3906TRLF	05-5890	R40	10k, 250mW, 5%	10-7016
U2	ICM7555	06-6136	R41	100k, 250mW, 5%	10-7023
U3	TLC27M7IP	06-6248	R42	180k, 250mW, 5%	10-7068

Ref. No.	Description	Part No.	P3	CONN-640456-5	
				MTA100	13-8057
R47	100k, 250mW, 5%	10-7023	P4	CONN-640456-4	
R48	10M, 250mW, 5%	10-7031		MTA100	13-8088
	DC		Ref. No.	Description	Part No.
THERMISTO	KS		Chocsic Wiring	Diagram, Drawing 363 X	587
RT15	150 Ohm, 333mW, 2%	07-6332	Chassis withig	Diagram, Drawing 505 A	302
RT23	150 Ohm, 333mW, 2%	07-6332			
	,,,,,,,		AUDIO		
INDUCTORS			DS1	UNIMORPH 60690	21-9251
			DOI		21 7201
L1	470UHY	21-9600	CONNECTOR		
	FDC				
TRANSFORM	EKS		J1	CONN-1-640442-6	
Т1	L8050	40-0902	10	MTA100	13-8187
11	20030	10 0902	J2	CONN-640442-2	12 0170
MISCELLANI	EOUS		J3	MTA100 CONN-640442-5	13-8178
			3.5	MTA100	13-8140
W2-W9.	RECEPTACLE Cloverlea		J4	CONN-640442-4	15 01 10
	011-6809	18-8771		MTA100	13-8170
P1	CONN-1-640456-6	12 0124	J5	RECPT-UG706/U "C"	13-7751
P2	MTA100X16 CONN-640456-2 MTA10	13-8134			
F2	COM10-040450-2 MTAI	13-8073	SWITCHES		
J1	CONTACT#1414	18-9124	01	C (1 1 DA (00 010	00 (501
J2	JACK-TEST 1128-09-03	19	S1 S2	Centerlab PA600-210 55D36-01-2-AJN	08-6501 08-6514
		18-8806	52 53-54	7101-SYZ-QE	08-6511
			S5 54 S6	30-1 P/B	08-6517
Calibration Board, Drawing 363 X 528		BATTERY			
			D1 D2	"D" D	21 0212
	pletely Assembled pration Board	5363-674	B1-B2	"D" Duracell Battery	21-9313
Call		5505-074	DETECTOR		
CAPACITORS	5		DEILEIOK		
			V1	Model 12S/19/3-97	
C1	0.047ΦF 100V C X7R	04-5565		DETECTOR	47-1574
C2	0.0047ΦF 100V C X7R	04-5570		X-TAL/TUBE ASSEMBI	
				12S ADIT	2004-061
RESISTORS			MISCELLANE		
R1-R2	1 Meg Trimmer	09-6814	MISCELLANE	.005	
R3	100k Trimmer	09-6813	*	PORTABLE BATTERY	NEGATIVE
R4	1 Meg Trimmer	09-6814		CONTACT ASSY	2001-065
R5	100k Trimmer	09-6813	*	PORTABLE BATTERY	
R7	100k Trimmer	09-6813		CONTACT ASSY	2001-066
			M1	PORT BEZEL	(a
RESISTOR NETWORK			FRONT PANEL ASSY	4363-188	
DN1	NETWODZ 101 OD		*	PORT DEEP CAN	1262 615
RN1	NETWORK-10k SIP 8PIN	12-7720	*	ASSEMBLY Model 3-97 CASTING	4363-615 9363-913
	OF IIN	12-1120	*	Model 3-97/3-98 MAIN	7505-715
MISCELLANEOUS				HARNESS	8363-700
*			*	PORTABLE KNOB	08-6613

Ref. No.	Description	Part No.
*	PROBE KNOB-	
	MS 91528	08-6606
*	PORT BEZEL GLASS	
	W/O SCREWS	4363-352
*	METER MOVEMENT	
	(1mA)	15-8030
*	PORTABLE METER	
	FACE	7363-136
*	HARNESS-PORT	
	CAN WIRES	8363-462
*	PORTABLE BATTERLY	LID WITH
	STAINLESS CONTACT	2009-036
.*	PORT. LATCH KIT	
	W/O BATT. LID	4363-349
*	PORT. CALIB. COVER	
	W/SCREWS	9363-200
*	PORT. HANDLE	
	(ROLLED) W/SCREWS	7363-139
*	PORT HANDLE FOR CL	JP
	W/SCREWS	7363-203
*	REPLACEMENT CABLE	Ξ
	(STD 39 inch)	40-1004
*	CLIP (44-6 TYPE)	
	W/SCREWS 7	010-008-01

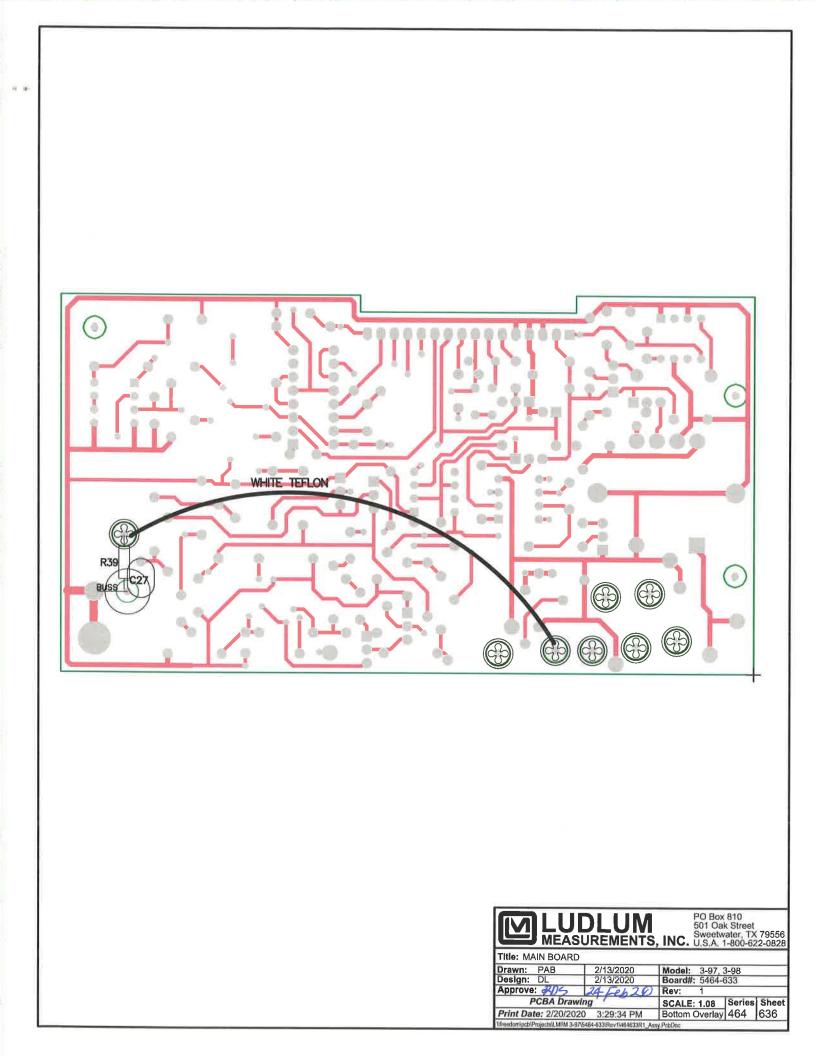

DRAWINGS AND DIAGRAMS

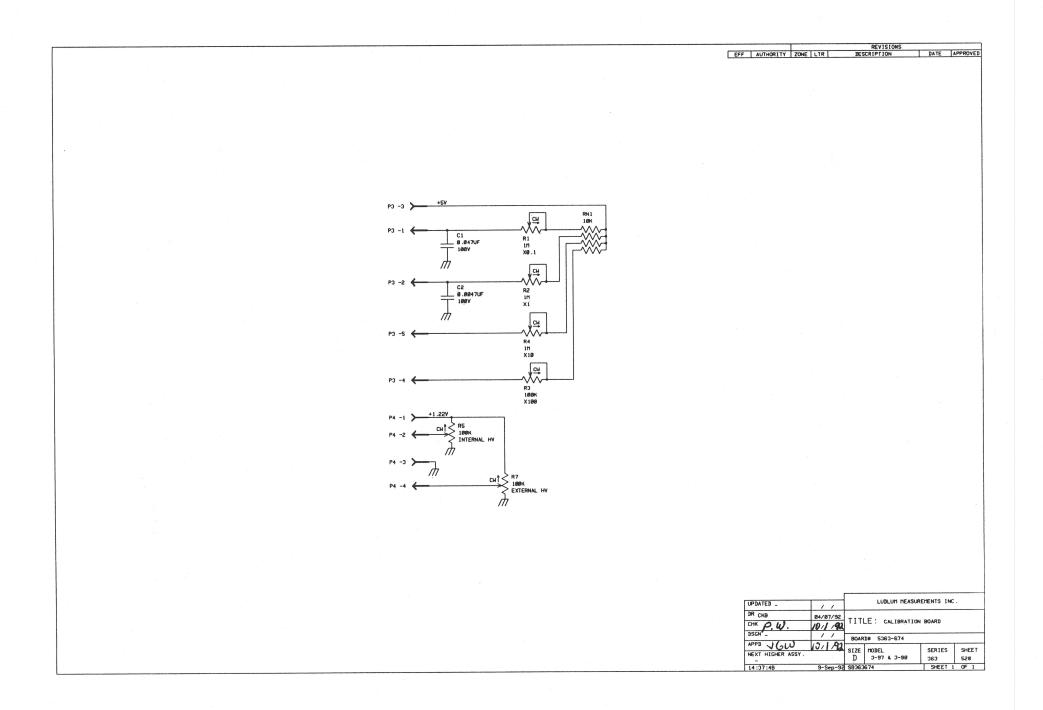

Energy Response Curve for Model 3-97 (Internal Detector)

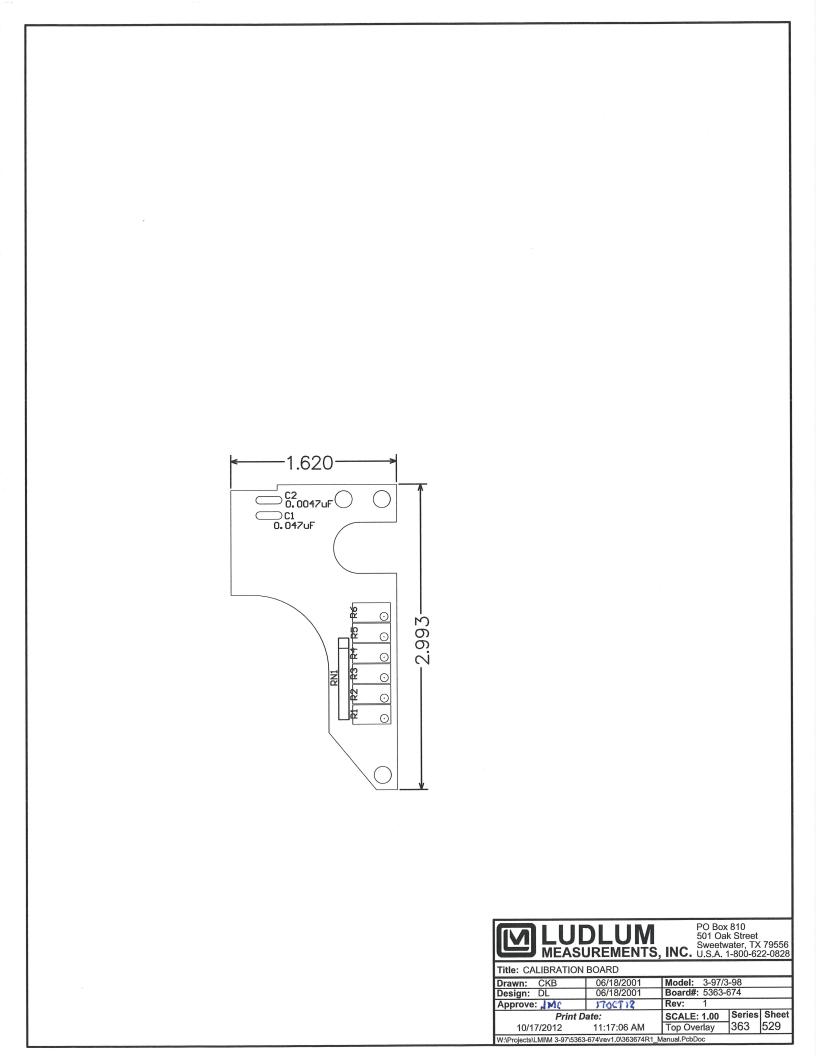

Main Circuit Board, Drawing 464 x 633 Main Circuit Board Component Layout, Drawing 464 x 636 (2 sheets)

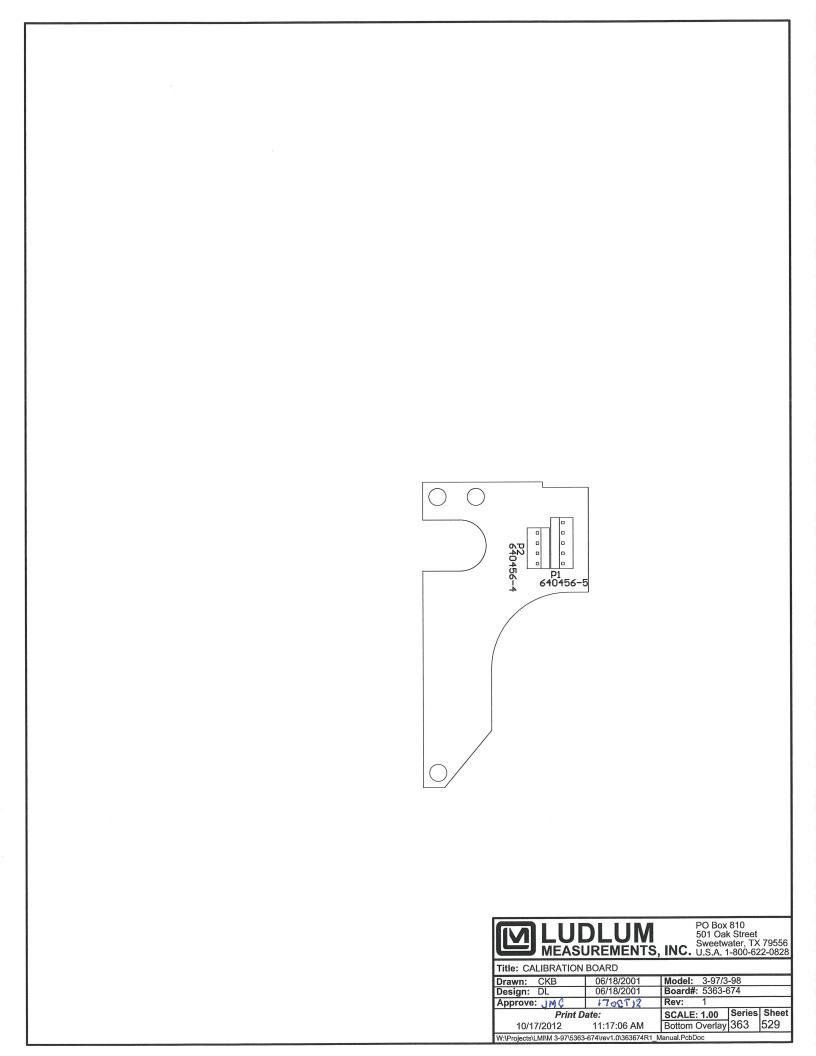
Calibration Board, Drawing 363 x 528 Calibration Board Component Layout, 363 x 529 (2 sheets)

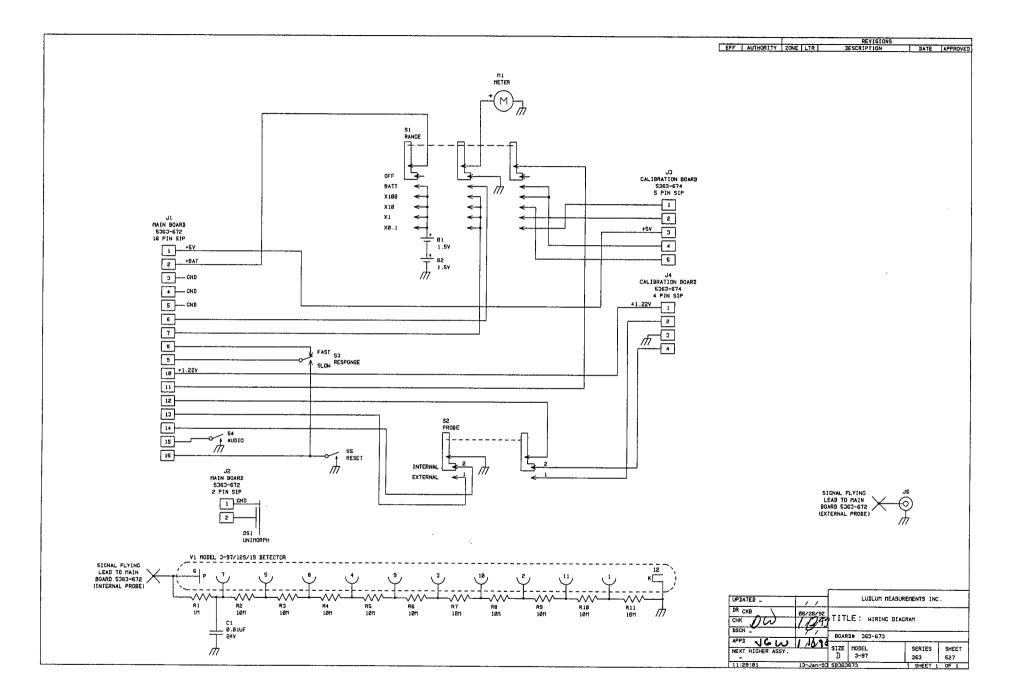
Wiring Diagram, Drawing 363 x 527






 PCBA Drawing
 ScALE: 1.08
 Series
 Sheet


 Print Date: 2/20/2020
 4:38:26 PM
 Top Overlay
 464
 636


 Wrendomipcki/ProjectolLMIW 3-975464-633/Rur/W64633/RL Assy. PchDoc
 Vertice
 464
 636

